scholarly journals New findings on the three-dimensional anatomical relations between the bronchi and pulmonary blood vessels at the pulmonary hilum

2014 ◽  
Vol 28 (4) ◽  
pp. 506-511 ◽  
Author(s):  
Takamasa Onuki ◽  
Masato Kanzaki ◽  
Takuma Kikkawa ◽  
Tamami Isaka ◽  
Kei Sakamoto ◽  
...  
Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rino Saiga ◽  
Masayuki Uesugi ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
Yoshio Suzuki ◽  
...  

AbstractBrain blood vessels constitute a micrometer-scale vascular network responsible for supply of oxygen and nutrition. In this study, we analyzed cerebral tissues of the anterior cingulate cortex and superior temporal gyrus of schizophrenia cases and age/gender-matched controls by using synchrotron radiation microtomography or micro-CT in order to examine the three-dimensional structure of cerebral vessels. Over 1 m of cerebral blood vessels was traced to build Cartesian-coordinate models, which were then used for calculating structural parameters including the diameter and curvature of the vessels. The distribution of vessel outer diameters showed a peak at 7–9 μm, corresponding to the diameter of the capillaries. Mean curvatures of the capillary vessels showed a significant correlation to the mean curvatures of neurites, while the mean capillary diameter was almost constant, independent of the cases. Our previous studies indicated that the neurites of schizophrenia cases are thin and tortuous compared to controls. The curved capillaries with a constant diameter should occupy a nearly constant volume, while neurons suffering from neurite thinning should have reduced volumes, resulting in a volumetric imbalance between the neurons and the vessels. We suggest that the observed structural correlation between neurons and blood vessels is related to neurovascular abnormalities in schizophrenia.


1994 ◽  
Vol 42 (5) ◽  
pp. 681-686 ◽  
Author(s):  
V Rummelt ◽  
L M Gardner ◽  
R Folberg ◽  
S Beck ◽  
B Knosp ◽  
...  

The morphology of the microcirculation of uveal melanomas is a reliable market of tumor progression. Scanning electron microscopy of cast corrosion preparations can generate three-dimensional views of these vascular patterns, but this technique sacrifices the tumor parenchyma. Formalin-fixed wet tissue sections 100-150 microns thick from uveal melanomas were stained with the lectin Ulex europaeus agglutinin I (UEAI) and proliferating cell nuclear antigen (PCNA) to demonstrate simultaneously the tumor blood vessels and proliferating tumor cells. Indocarbocyanine (Cy3) was used as a fluorophore for UEAI and indodicarbocyanine (Cy5) was used for PCNA. Double labeled sections were examined with a laser scanning confocal microscope. Images of both stains were digitized at the same 5-microns intervals and each of the two images per interval was combined digitally to form one image. These combined images were visualized through voxel processing to study the relationship between melanoma cells expressing PCNA and various microcirculatory patterns. This technique produces images comparable to scanning electron microscopy of cast corrosion preparations while permitting simultaneous localization of melanoma cells expressing PCNA. The microcirculatory tree can be viewed from any perspective and the relationship between tumor cells and the tumor blood vessels can be studied concurrently in three dimensions. This technique is an alternative to cast corrosion preparations.


Neuroreport ◽  
2003 ◽  
Vol 14 (8) ◽  
pp. 1171-1176 ◽  
Author(s):  
Jerzy Krupinski ◽  
Paul Stroemer ◽  
Mark Slevin ◽  
Eulalia Marti ◽  
Pat Kumar ◽  
...  

2002 ◽  
Vol 4 (4) ◽  
pp. 251-270 ◽  
Author(s):  
M. J. Plank ◽  
B. D. Sleeman ◽  
P. F. Jones

Angiogenesis, the growth of new blood vessels from existing ones, is an important, yet not fully understood, process and is involved in diseases such as rheumatoid arthritis, diabetic retinopathy and solid tumour growth. Central to the process of angiogenesis are endothelial cells (EC), which line all blood vessels, and are capable of forming new capillaries by migration, proliferation and lumen formation. We construct a cell-based mathematical model of an experiment (Vernon, R.B. and Sage, E.H. (1999) “A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices”,Microvasc. Res.57, 118–133) carried out to assess the response of EC to various diffusible angiogenic factors, which is a crucial part of angiogenesis. The model for cell movement is based on the theory of reinforced random walks and includes both chemotaxis and chemokinesis. Three-dimensional simulations are run and the results correlate well with the experimental data. The experiment cannot easily distinguish between chemotactic and chemokinetic effects of the angiogenic factors. We, therefore, also run two-dimensional simulations of a hypothetical experiment, with a point source of angiogenic factor. This enables directed (gradient-driven) EC migration to be investigated independently of undirected (diffusion-driven) migration.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Hamed Nasrfard ◽  
Hassan Rahimzadeh ◽  
Ali Ahmadpour ◽  
Ehsan Amani

In this study, detailed three-dimensional (3D) numerical simulations of intermittent multiphase flows were carried out to investigate the slug initiation process and various features of intermittent flows inside a horizontal pipe. Air and water are used as working fluids. The domain used for simulations is a 14.4 m long pipe with 54 mm inner diameter. The volume of fluid (VOF) model was used to capture the air/water interface and its temporal evolution. Using the developed computational fluid dynamics (CFD) model, the slug formation and propagation along horizontal circular pipe were successfully predicted and studied comprehensively. Slug length and the frequency of slug formation, as two main features of intermittent flow, were used to validate the model against experimental results and available correlations in the literature. Three-dimensional numerical simulation of intermittent flow proved to be a powerful tool in tackling limitations of experiments and providing detailed data about various features of the intermittent flow. The effect of gas and liquid superficial velocities on the liquid slug and elongated bubble length was explored. Moreover, the study revealed new findings related to the elongated bubble shape and velocity field in the slug unit.


Sign in / Sign up

Export Citation Format

Share Document