Epidermal growth factor receptor numbers in male and female mouse primary hepatocyte cultures

1988 ◽  
Vol 6 (4) ◽  
pp. 231-235 ◽  
Author(s):  
Robert Benveniste ◽  
Theodore M. Danoff ◽  
John Ilekis ◽  
H. Randall Craig
1989 ◽  
Vol 3 (2) ◽  
pp. 113-120 ◽  
Author(s):  
S. Johansson ◽  
B. Husman ◽  
G. Norstedt ◽  
G. Andersson

ABSTRACT Recent studies have implicated the involvement of pituitary factor(s) in the regulation of hepatic epidermal growth factor receptor (EGF-R) levels. In the present study the possible role of GH as a regulator of EGF-R has been examined by measuring hepatic EGF-R mRNA and EGF binding in intact and GH-deficient rats and mice before and after administration of GH. Using a human EGF-R probe, 10·5 and 6·0 kb transcripts were detected in mouse and rat liver by Northern gel analysis. EGF-R mRNA was quantified by solution hybridization, and EGF binding determined by incubation of 125I-labelled EGF with a low-density membrane fraction. Levels of hepatic EGF-R mRNA and binding of EGF in female rats were about two-thirds of those in male rats. GH-deficient (lit/lit) male and female mice had approximately 10 and 25% respectively of the levels of EGF-R mRNA and EGF binding of intact male and female mice. Furthermore, hypophysectomized rats exhibited a reduced level of EGF-R mRNA and EGF binding, corresponding to about 20% of the levels detected in intact male rats. When hypophysectomized male and female rats received recombinant human GH (hGH) either as intermittent injections or by continuous infusion using osmotic minipumps, the EGF-R mRNA and EGF binding levels increased to about half those of the intact male animals. No differences between intermittent or continuous administration of hGH on the induction of EGF-R mRNA or EGF binding could be seen. The correlation between mRNA and binding levels suggests regulation at a pretranslational level. There was a reduction of EGF-R mRNA to female levels when intact male rats were given hGH. An additional reduction of EGF binding levels was seen in both intact male and female rats exposed continuously to GH. This may indicate additional translational and/or post-translational regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document