A rice mutant with a giant embryo has increased levels of lipophilic antioxidants, E vitamers, and γ‐oryzanol fraction

2019 ◽  
Vol 97 (2) ◽  
pp. 270-280
Author(s):  
Ming‐Hsuan Chen ◽  
Christine J. Bergman ◽  
Casey C. Grimm ◽  
Anna M. McClung
Keyword(s):  
Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1477
Author(s):  
Asadullah Khan ◽  
Sanaullah Jalil ◽  
Huan Cao ◽  
Yohannes Tsago ◽  
Mustapha Sunusi ◽  
...  

The anthocyanin biosynthesis attracts strong interest due to the potential antioxidant value and as an important morphological marker. However, the underlying mechanism of anthocyanin accumulation in plant tissues is not clearly understood. Here, a rice mutant with a purple color in the leaf blade, named pl6, was developed from wild type (WT), Zhenong 41, with gamma ray treatment. By map-based cloning, the OsPL6 gene was located on the short arm of chromosome 6. The multiple mutations, such as single nucleotide polymorphism (SNP) at −702, −598, −450, an insertion at −119 in the promoter, three SNPs and one 6-bp deletion in the 5′-UTR region, were identified, which could upregulate the expression of OsPL6 to accumulate anthocyanin. Subsequently, the transcript level of structural genes in the anthocyanin biosynthesis pathway, including OsCHS, OsPAL, OsF3H and OsF3′H, was elevated significantly. Histological analysis revealed that the light attenuation feature of anthocyanin has degraded the grana and stroma thylakoids, which resulted in poor photosynthetic efficiency of purple leaves. Despite this, the photoabatement and antioxidative activity of anthocyanin have better equipped the pl6 mutant to minimize the oxidative damage. Moreover, the contents of abscisic acid (ABA) and cytokanin (CK) were elevated along with anthocyanin accumulation in the pl6 mutant. In conclusion, our results demonstrate that activation of OsPL6 could be responsible for the purple coloration in leaves by accumulating excessive anthocyanin and further reveal that anthocyanin acts as a strong antioxidant to scavenge reactive oxygen species (ROS) and thus play an important role in tissue maintenance.


2018 ◽  
Vol 9 ◽  
Author(s):  
Rohit Dhakarey ◽  
Manish L. Raorane ◽  
Achim Treumann ◽  
Preshobha K. Peethambaran ◽  
Rachel R. Schendel ◽  
...  

2016 ◽  
Vol 15 (4) ◽  
Author(s):  
K.J. Lee ◽  
S.-J. Kwon ◽  
J.E. Hwang ◽  
S.M. Han ◽  
I. Jung ◽  
...  

2017 ◽  
Vol 114 (37) ◽  
pp. 9984-9989 ◽  
Author(s):  
Ting Zhang ◽  
Yunfeng Li ◽  
Ling Ma ◽  
Xianchun Sang ◽  
Yinghua Ling ◽  
...  

The spikelet is a unique inflorescence structure in grass. The molecular mechanisms behind the development and evolution of the spikelet are far from clear. In this study, a dominant rice mutant, lateral florets 1 (lf1), was characterized. In the lf1 spikelet, lateral floral meristems were promoted unexpectedly and could generally blossom into relatively normal florets. LF1 encoded a class III homeodomain-leucine zipper (HD-ZIP III) protein, and the site of mutation in lf1 was located in a putative miRNA165/166 target sequence. Ectopic expression of both LF1 and the meristem maintenance gene OSH1 was detected in the axil of the sterile lemma primordia of the lf1 spikelet. Furthermore, the promoter of OSH1 could be bound directly by LF1 protein. Collectively, these results indicate that the mutation of LF1 induces ectopic expression of OSH1, which results in the initiation of lateral meristems to generate lateral florets in the axil of the sterile lemma. This study thus offers strong evidence in support of the “three-florets spikelet” hypothesis in rice.


2004 ◽  
Vol 54 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Hirohiko Hirochika ◽  
Emmanuel Guiderdoni ◽  
Gynheung An ◽  
Yue-ie Hsing ◽  
Moo Young Eun ◽  
...  
Keyword(s):  

2016 ◽  
Vol 60 (1) ◽  
pp. 86-94 ◽  
Author(s):  
K. -C. Lin ◽  
W. -S. Jwo ◽  
N. N. P. Chandrika ◽  
T. -M. Wu ◽  
M. -H. Lai ◽  
...  

2011 ◽  
Vol 92 (7) ◽  
pp. 1468-1474 ◽  
Author(s):  
Toong Long Jeng ◽  
Yi Ju Shih ◽  
Pei Tzu Ho ◽  
Chia Chi Lai ◽  
Yu Wen Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document