scholarly journals Comparative Analysis of Synthetic Natural Gas versus Hydrogen Production from Bagasse

2017 ◽  
Vol 40 (3) ◽  
pp. 546-554 ◽  
Author(s):  
Stavros Michailos ◽  
David Parker ◽  
Colin Webb
2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Ferrari ◽  
...  

Abstract The growing attention to environmental issues has led to an increase in renewable source exploitation. These resources, in addition to their characteristic of zero emissions, can be employed where there is no connection to the electricity grid or to produce synthetic fuels (e.g. hydrogen or synthetic natural gas) via power-to-gas technologies. In the context of the ERA-Net Project ZEHTC (Zero Emission Hydrogen Turbine Center), the aim of this paper is the development of a design calculation model for the ZEHTC pilot plant, consisting in the first gas turbine test facility making use of the power produced during tests — along with renewables — for hydrogen production, integrated with batteries. The hydrogen is locally used — mixed with natural gas — to run the gas turbine, reducing its environmental impact. The developed code aims at maximizing the conversion of the renewable source into hydrogen and guaranteeing its availability for the planned tests. It includes physical-mathematical models for each component and has been used to perform a parametric analysis varying the main components size, thus estimating the total produced hydrogen. The main innovation of the ZEHTC micro-grid project consists in the use of a gas turbine — instead of a fuel cell — as system to reconvert the stored hydrogen.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
William L. Becker ◽  
Michael Penev ◽  
Robert J. Braun

Power-to-gas to energy systems are of increasing interest for low carbon fuels production and as a low-cost grid-balancing solution for renewables penetration. However, such gas generation systems are typically focused on hydrogen production, which has compatibility issues with the existing natural gas pipeline infrastructures. This study presents a power-to-synthetic natural gas (SNG) plant design and a techno-economic analysis of its performance for producing SNG by reacting renewably generated hydrogen from low-temperature electrolysis with captured carbon dioxide. The study presents a “bulk” methanation process that is unique due to the high concentration of carbon oxides and hydrogen. Carbon dioxide, as the only carbon feedstock, has much different reaction characteristics than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to design a system of multistaged reactors for the conversion of hydrogen and carbon dioxide to SNG. Heat recuperation from the methanation reaction is accomplished using organic Rankine cycle (ORC) units to generate electricity. The product SNG has a Wobbe index of 47.5 MJ/m3 and the overall plant efficiency (H2/CO2 to SNG) is shown to be 78.1% LHV (83.2% HHV). The nominal production cost for SNG is estimated at 132 $/MWh (38.8 $/MMBTU) with 3 $/kg hydrogen and a 65% capacity factor. At U.S. DOE target hydrogen production costs (2.2 $/kg), SNG cost is estimated to be as low as 97.6 $/MWh (28.6 $/MMBtu or 1.46 $/kgSNG).


Fuel ◽  
2021 ◽  
Vol 291 ◽  
pp. 120111
Author(s):  
Ruxing Gao ◽  
Chundong Zhang ◽  
Ki-Won Jun ◽  
Seok Ki Kim ◽  
Hae-Gu Park ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1258
Author(s):  
Szabolcs Szima ◽  
Calin-Cristian Cormos

Production of synthetic natural gas (SNG) offers an alternative way to valorize captured CO2 from energy intensive industrial processes or from a dedicated CO2 grid. This paper presents an energy-efficient way for synthetic natural gas production using captured CO2 and renewable hydrogen. Considering several renewable hydrogen production sources, a techno-economic analysis was performed to find a promising path toward its practical application. In the paper, the five possible renewable hydrogen sources (photo fermentation, dark fermentation, biomass gasification, bio photolysis, and PV electrolysis) were compared to the two reference cases (steam methane reforming and water electrolysis) from an economic stand point using key performance indicators. Possible hydrogen production capacities were also considered for the evaluation. From a technical point of view, the SNG process is an efficient process from both energy efficiency (about 57%) and CO2 conversion rate (99%). From the evaluated options, the photo-fermentation proved to be the most attractive with a levelized cost of synthetic natural gas of 18.62 €/GJ. Considering the production capacities, this option loses its advantageousness and biomass gasification becomes more attractive with a little higher levelized cost at 20.96 €/GJ. Both results present the option when no CO2 credit is considered. As presented, the CO2 credits significantly improve the key performance indicators, however, the SNG levelized cost is still higher than natural gas prices.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Tae Young Kim ◽  
Seong Bin Jo ◽  
Jin Hyeok Woo ◽  
Jong Heon Lee ◽  
Ragupathy Dhanusuraman ◽  
...  

Co–Fe–Al catalysts prepared using coprecipitation at laboratory scale were investigated and extended to pilot scale for high-calorific synthetic natural gas. The Co–Fe–Al catalysts with different metal loadings were analyzed using BET, XRD, H2-TPR, and FT-IR. An increase in the metal loading of the Co–Fe–Al catalysts showed low spinel phase ratio, leading to an improvement in reducibility. Among the catalysts, 40CFAl catalyst prepared at laboratory scale afforded the highest C2–C4 hydrocarbon time yield, and this catalyst was successfully reproduced at the pilot scale. The pelletized catalyst prepared at pilot scale showed high CO conversion (87.6%), high light hydrocarbon selectivity (CH4 59.3% and C2–C4 18.8%), and low byproduct amounts (C5+: 4.1% and CO2: 17.8%) under optimum conditions (space velocity: 4000 mL/g/h, 350 °C, and 20 bar).


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 697
Author(s):  
Tae-Young Kim ◽  
Seongbin Jo ◽  
Yeji Lee ◽  
Suk-Hwan Kang ◽  
Joon-Woo Kim ◽  
...  

Fe-Ni and Co-Fe-Ni catalysts were prepared by the wet impregnation method for the production of high-calorific synthetic natural gas. The influence of Ni addition to Fe and Co-Fe catalyst structure and catalytic performance was investigated. The results show that the increasing of Ni amount in Fe-Ni and Co-Fe-Ni catalysts increased the formation of Ni-Fe alloy. In addition, the addition of nickel to the Fe and Co-Fe catalysts could promote the dispersion of metal and decrease the reduction temperature. Consequently, the Fe-Ni and Co-Fe-Ni catalysts exhibited higher CO conversion compared to Fe and Co-Fe catalysts. A higher Ni amount in the catalysts could increase C1–C4 hydrocarbon production and reduce the byproducts (C5+ and CO2). Among the catalysts, the 5Co-15Fe-5Ni/γ-Al2O3 catalyst affords a high light hydrocarbon yield (51.7% CH4 and 21.8% C2–C4) with a low byproduct yield (14.1% C5+ and 12.1% CO2).


Author(s):  
Jose Antonio Medrano ◽  
Margot Anabell Llosa-Tanco ◽  
David Alfredo Pacheco Tanaka ◽  
Fausto Gallucci

Sign in / Sign up

Export Citation Format

Share Document