Simultaneous Direct Voltammetric Determination of Metal-Oxide Nanoparticles from Their Mixture (CuO/NiO)

2013 ◽  
Vol 1 (1) ◽  
pp. 249-253 ◽  
Author(s):  
Wei Zhe Teo ◽  
Martin Pumera
Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2505
Author(s):  
Amal M. Al-Mohaimeed ◽  
Wedad A. Al-Onazi ◽  
Maha F. El-Tohamy

The current work described the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) and their electrocatalytic activity in the determination of minocycline hydrochloride (MCL). The unique features of metal oxide nanoparticles such as zinc oxide encourage the researchers to investigate the activity of metal oxide nanoparticles as remarkable semiconductor materials active in the electrochemical sensing determination. Herein, the suggested study displayed a comparative determination of minocycline hydrochloride using two conventional and modified ZnONPs-coated wire sensors. The recorded results showed the linear behavior of the enriched ZnONPs sensor over the 1.0 × 10−10–1.0 × 10−2 mol L−1 with respect to 1.0 × 10−6–1.0 × 10−2 mol L−1 for the conventional sensor. The two sensors are working in the pH range of 3–5 with regression equations EmV = (53.2 ± 0.5) log [MCL] + 448.8 and EmV = (58.7 ± 0.2) log [MCL] + 617.76 for conventional and enriched ZnONPs, respectively. The correlation coefficients were 0.9995 and 0.9998 for the previously mentioned sensors, respectively. The validity of the suggested analytical method was evaluated according to the recommended guidelines for methodology and drug analysis. The developed sensors were also used in the quantification of MCL in commercial formulations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1099
Author(s):  
Nawal Ahmed Alarfaj ◽  
Wedad Altuhami Al-Onazi ◽  
Amal Mohammed Al-Mohaimeed ◽  
Maha Farouk El-Tohamy ◽  
Hadeel Abdulaziz Alabdulmonem

In this study, two metal oxide nanoparticles NiO and MnO2 were synthesized from green sources Mentha spicata (M. spicata) extract and Malus domestica (M. domestica) peel extract, respectively. The optical and physical properties of the synthesized nanoparticles were characterized using spectroscopic and microscopic techniques. Simple, precise, and new spectrophotometric probes were suggested for the determination of three cephalosporin antibiotics, including levofloxacin (LVX), cephalexin (CPX), and cefotaxime sodium (CTX) in their pure form and commercial products. The spectrophotometric detection of the selected drugs is based on the catalytic enhancement of NiO and MnO2 nanoparticles (NPs) due to their unique optical properties. Linear relationships with main correlation coefficients 0.999 were obtained at 0.1–20, 1.0–80, and 0.001–100 µg mL−1 for the three drugs in the presence of NiONPs, whereas 0.01–60, 0.1–160, and 0.01–80 µg mL−1 were obtained in the presence of MnO2NPs at absorption wavelengths 290, 262, and 235 nm for LVX, CPX and CTX, respectively. The analytical methods were validated and successfully used for determination of the instigated drugs in their bulk and commercial dosage forms.


Sign in / Sign up

Export Citation Format

Share Document