Distortional buckling of compressed cold‐formed lipped C channels via buckling mode shapes

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 2535-2541
Author(s):  
Bálint Vaszilievits‐Sömjén

2011 ◽  
Vol 70 ◽  
pp. 416-421 ◽  
Author(s):  
Iveta Georgieva ◽  
Luc Schueremans ◽  
Guido De Roeck ◽  
Lincy Pyl

Built-up members of cold-formed steel (CFS) profiles were tested in 4-point bending. CFS profiles (generally thin-walled) deform considerably under load, and the deformed configuration is a result of the superposition of different buckling mode shapes. Local buckling propagates through the profile walls; during distortional buckling parts of the cross-section rotate around a web-flange juncture. Alongside the buckling effects, the overall deformation of the member is considerable. To study these slender and relatively long members, a sufficient number of measuring positions on the specimens is needed. Often, this is not feasible with the conventional measuring techniques. An optical measuring device was used to record the movement of a large number of points per specimen. The obtained results are placed in a 3D coordinate system and can be exported for further data processing. The goal of the measurement campaign was to calibrate a Finite Element model that will simulate the tests. The model will be used for the analysis of composed frame members of CFS profiles, whose design is not entirely covered by the European Standard [1]. After calibration, the FEA predicts the performance of these built-up members well.



2021 ◽  
Author(s):  
LUAN TRINH ◽  
PAUL WEAVER

Bamboo poles, and other one-dimensional thin-walled structures are usually loaded under compression, which may also be subject to bending arising from eccentric loading. Many of these structures contain diaphragms or circumferential stiffeners to prevent cross-sectional distortions and so enhance overall load-carrying response. Such hierarchical structures can compartmentalize buckling to local regions in addition to withstanding global buckling phenomena. Predicting the buckling mode shapes of such structures for a range of geometric parameters is challenging due to the interaction of these global and local modes. Abaqus finite element software is used to model thousands of circular hollow tubes with random geometric parameters such that the ratios of radius to periodic length range from 1/3-1/7, the ratio of wall thickness to radius varies from 1/4-1/10. The material used in this study is a type of bamboo, where the Young’s and shear moduli are point-wise orthotropic and gradually increase in magnitude in the radial direction. Under eccentric loads with varying eccentricity, the structures can buckle into a global mode or local modes within an internode, i.e. periodic unit. Moreover, the local modes may contain only one wave or multiple waves in the circumferential direction. As expected, numerical results show that the global mode is more likely to occur in small and thick tubes, whereas the local modes are observed in larger tubes with a smaller number of circumferential waves present in thicker walls. Also, greater eccentricity pushes the local mode domains towards smaller tubes. An efficient classification method is developed herein to identify the domains of each mode shape in terms of radius, wall thickness and eccentricity. Based on linear discriminant analysis, explicit boundary surfaces for the three domains are defined for the obtained data, which can help designers in predicting the mode shapes of tubular structures under axial bending.



2013 ◽  
Vol 351-352 ◽  
pp. 747-752
Author(s):  
Shuai Liu ◽  
Qi Jie Ma ◽  
Pei Jun Wang

This article aims to shed light on the nonlinear local-distortional-global interactive behavior of web-slotted channel columns by use of the finite element method. The effects of three kinds of initial geometric imperfection based on different distortional buckling mode were evaluated. It indicates that different distortional buckling mode does little difference on the nonlinear interactive buckling behavior of web-slotted channels. Based on the extensive parametric study, some modifications were made to the traditional Effective Width Method for the practical design of web-slotted channel columns undergoing local-distortional-global interactive buckling.



2019 ◽  
Vol 18 (2) ◽  
pp. 160-166
Author(s):  
Sina Toosi ◽  
Akbar Esfandiari ◽  
Ahmad Rahbar Ranji


2020 ◽  
Vol 20 (13) ◽  
pp. 2041007
Author(s):  
Rodrigo Gonçalves ◽  
Dinar Camotim ◽  
David Henriques

This paper reports the most recent developments concerning Generalized Beam Theory (GBT) formulations, and corresponding finite element implementations, for steel-concrete composite beams. These formulations are able to perform the following types of analysis: (i) materially nonlinear analysis, to calculate the beam load-displacement response, up to collapse, including steel plasticity, concrete cracking/crushing and shear lag effects, (ii) bifurcation (linear stability) analysis, to obtain local/distortional bifurcation loads and buckling mode shapes of beams subjected to negative (hogging) bending, accounting for shear lag and concrete cracking effects and (iii) long-term service analysis including creep, cracking and arbitrary cross-section deformation (which includes shear lag) effects. The potential (computational efficiency and accuracy) of the proposed GBT-based finite elements is illustrated through several numerical examples. For comparison purposes, results obtained with standard finite strip and shell/brick finite element models are provided.



2019 ◽  
Vol 137 ◽  
pp. 251-270 ◽  
Author(s):  
Gustavo Y. Matsubara ◽  
Eduardo de M. Batista ◽  
Guilherme C. Salles


Author(s):  
G D Galletly

When perfect, externally pressurized complete circular toroidal shells buckle, the minimum buckling pressure pcr usually occurs in the axisymmetric n = 0 mode, with pcr for n = 2 being only slightly larger. In the present paper, the effects of axisymmetric initial geometric imperfections on reducing pcr for the perfect shell are investigated. Various types of imperfection are studied, i.e. localized flat spots, smooth dimples, sinusoids and buckling mode shapes. The principal geometry investigated was R/b = 10, b/t = 100, although other geometries were also considered. The maximum decrease in buckling resistance, Δ pcr, was found to be about 16 per cent at δ 0/t = 1 and it occurred with smooth dimples at the north (φ = 180°) and south (φ=0°) poles. This value of Δ pcr is not large. Circular toroidal shells thus do not appear to be very sensitive to axisymmetric initial geometric imperfections. The reductions in the buckling pressure of the above shell, arising because of initial imperfections having the shape of the n = 0 and the n = 2 buckling modes, were 12 and 9 per cent respectively for wo/t = 1. These decreases in the buckling resistance are smaller than that for the ‘two smooth dimple’ case mentioned above.



2008 ◽  
Vol 46 (5) ◽  
pp. 484-493 ◽  
Author(s):  
A.R. Rahai ◽  
M.M. Alinia ◽  
S. Kazemi


2019 ◽  
Vol 20 (01) ◽  
pp. 2050005 ◽  
Author(s):  
Jiabin Sun ◽  
Yiwen Ni ◽  
Hanyu Gao ◽  
Shengbo Zhu ◽  
Zhenzhen Tong ◽  
...  

Exact solutions for the torsional bifurcation buckling of functionally graded (FG) multilayer graphene platelet reinforced composite (GPLRC) cylindrical shells are obtained. Five types of graphene platelets (GPLs) distributions are considered, and a slope factor is introduced to adjust the distribution profile of the GPLs. Within the framework of Donnell’s shell theory and with the aid symplectic mathematics, a set of lower-order Hamiltonian canonical equations are established and solved analytically. Consequently, the critical buckling loads and corresponding buckling mode shapes of the GPLRC shells are obtained. The effects of various factors, including the geometric parameters, boundary conditions and material properties on the torsional buckling behaviors are investigated and discussed in detail.



2020 ◽  
Vol 184 ◽  
pp. 105723 ◽  
Author(s):  
Zbigniew Kolakowski ◽  
Tomasz Kubiak ◽  
Monika Zaczynska ◽  
Filip Kazmierczyk


Sign in / Sign up

Export Citation Format

Share Document