On determination of interwell connectivity under immiscible gas injection process: Modified capacitance‐resistance model

2018 ◽  
Vol 97 (4) ◽  
pp. 1008-1021 ◽  
Author(s):  
Seyed Hamidreza Yousefi ◽  
Fariborz Rashidi ◽  
Mohammad Sharifi ◽  
Mohammad Soroush
1985 ◽  
Vol 25 (04) ◽  
pp. 554-564
Author(s):  
J.G.J. Ypma

Abstract A two-dimensional (2D) analytical model is presented for gas/oil gravity drainage in a homogeneous, dipping reservoir. The sensitivity of gas/oil gravity drainage to key variables such as injection rate, oil relative permeability, and permeability anisotropy can be determined quickly with this model. Example calculations show that miscible-like recovery efficiencies are possible with immiscible gas injection into high-permeability dipping reservoirs with light oil. A procedure based on the analytical model has been developed to simulate immiscible gas injection into highly stratified reservoirs accurately. This simulation procedure allows a great deal of geological detail to be incorporated into reservoir models, because it permits relatively coarse grids. Application of the simulation procedure to a reservoir containing many discontinuous shales reveals that the presence of shales may favorably affect the recovery efficiency of an immiscible gas-injection process. Introduction Gas injection increasingly is being applied as a secondary or tertiary recovery process. High-permeability, light-oil reservoirs with a reasonable reservoir dip are particularly suitable candidates for gas injection. In these reservoirs, a gravity-stable injection scheme is often possible, leading to high sweep efficiencies. If the injection process is carried out at sufficiently high pressure, process is carried out at sufficiently high pressure, favorable phase behavior between reservoir fluid and injection gas can contribute significantly to the recovery of oil. Miscibility, however, is by no means always necessary to obtain high displacement efficiencies. Even in the case of an entirely immiscible displacement, a high displacement efficiency is possible if gravity drainage is the dominant production mechanism. Laboratory experiments have shown that, the residual oil saturation after gas invasion, is virtually zero in highly permeable sandstone cores containing connate water. The ultimate recovery of an immiscible process is then close to 100%. Whether oil saturations process is then close to 100%. Whether oil saturations in the gas-invaded zone will approach the residual value within the lifetime of a particular reservoir depends on the rate of gravity drainage for this reservoir. This problem, which is the main subject of this paper, has been studied by both analytical means and numerical simulation. In the following, first a 2D analytical model is introduced for gas/oil gravity drainage in a homogeneous, dipping reservoir. The model combines aspects from both one-dimensional (1D) vertical Buckley-Leverett drainage theory and Dietz' segregated flow theory for dipping reservoirs. Assumptions underlying the model have been verified by 2D cross-sectional simulations. Second, a procedure based on the analytical gravity-drainage procedure based on the analytical gravity-drainage model has been developed to simulate immiscible secondary gas injection into a highly stratified reservoir accurately. This is illustrated with an example of gas injection into a reservoir containing discontinuous shale layers. Analytical Model for Gravity Drainage Description of the Model. In this section, an approximate analytical model is formulated for immiscible, gravity-stable gas/oil displacement in a homogeneous, dipping layer. Fig. 1 shows a schematic cross section of the draining reservoir with some relevant flow characteristics. In this model, oil is assumed to be produced from downdip wells near the oil/water contact at a rate that ensures a gravity-stable displacement, while gas is injected in updip wells near the crest to fill the voidage. This causes the gas/oil contact (GOC) to move downward gradually. Behind the GOC some oil will be left, the amount of which depends on the oil relative permeability and on the tilt and rate of descent of the GOC. The gas-invaded region will continue to produce oil by after-drainage; this oil will collect at the bottom of the reservoir in a thin oil layer, which flows to the producers with the along-dip component of gravity as driving force. To make the essentially 2D model amenable to analytical calculation, the following assumptions are introduced.The model has infinite gas mobility.The model has negligible gas/oil capillary pressure. pressure.The GOC moves at a constant velocity, v GOC, x, and at a constant tilt angle, given by Dietz' theory for gravity-stable segregated flow in dipping reservoirs (evaluated for infinite gas mobility) as.............(1)with u max, x being the maximum along-dip gravity drainage ratei.e., in the direction of bulk fluid flow. This rate is defined as..............(2) SPEJ p. 554


2014 ◽  
Vol 59 (11) ◽  
pp. 3461-3469 ◽  
Author(s):  
Abdolhossein Hemmati-Sarapardeh ◽  
Shahab Ayatollahi ◽  
Ali Zolghadr ◽  
Mohammad-Hossein Ghazanfari ◽  
Mohsen Masihi

2021 ◽  
Author(s):  
Thaer I. Ismail ◽  
Emad W. Al-Shalabi ◽  
Mahmoud Bedewi ◽  
Waleed AlAmeri

Abstract Gas injection is one of the most commonly used enhanced oil recovery (EOR) methods. However, there are multiple problems associated with gas injection including gravity override, viscous fingering, and channeling. These problems are due to an adverse mobility ratio and cause early breakthrough of the gas resulting, in poor recovery efficiency. A Water Alternating Gas (WAG) injection process is recommended to resolve these problems through better mobility control of gas, leading to better project economics. However, poor WAG design and lack of understanding of the different factors that control its performance might result in unfavorable oil recovery. Therefore, this study provides more insight into improving WAG oil recovery by optimizing different surface and subsurface WAG parameters using a coupled surface and subsurface simulator. Moreover, the work investigates the effects of hysteresis on WAG performance. This case study investigates a field named Volve, which is a decommissioned sandstone field in the North Sea. Experimental design of factors influencing WAG performance on this base case was studied. Sensitivity analysis was performed on different surface and subsurface WAG parameters including WAG ratio, time to start WAG, total gas slug size, cycle slug size, and tubing diameter. A full two-level factorial design was used for the sensitivity study. The significant parameters of interest were further optimized numerically to maximize oil recovery. The results showed that the total slug size is the most important parameter, followed by time to start WAG, and then cycle slug size. WAG ratio appeared in some of the interaction terms while tubing diameter effect was found to be negligible. The study also showed that phase hysteresis has little to no effect on oil recovery. Based on the optimization, it is recommended to perform waterflooding followed by tertiary WAG injection for maximizing oil recovery from the Volve field. Furthermore, miscible WAG injection resulted in an incremental oil recovery between 5 to 11% OOIP compared to conventional waterflooding. WAG optimization is case-dependent and hence, the findings of this study hold only for the studied case, but the workflow should be applicable to any reservoir. Unlike most previous work, this study investigates WAG optimization considering both surface and subsurface parameters using a coupled model.


2021 ◽  
pp. 4-12
Author(s):  

Experimental studies have revealed a significant impact of deformation of Сommon Rail injector parts on the fuel supply process. High pressures alter the structure of the fuel supply cy-cle. Theforward front of the fuel supply cycle begins with the stage of unloading the deformed parts of the injector. The rear front of the fuel supply cycle ends with the stage of deformation of the injector parts. The calculated and experimental determination of cyclic fuel supply gave similar results. The developed method of determining the duration of the injection cycle stages creates a basis for experimental verification of mathematical models. Keywords: injector, Common Rail, diesel, fuel system, electronic control, needle, fuel injection


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550025 ◽  
Author(s):  
Seyed Hanif Mahboobi ◽  
Alireza Taheri ◽  
Hossein Nejat Pishkenari ◽  
Ali Meghdari ◽  
Mahya Hemmat

Determination of an injection condition which is minimally invasive to the cell membrane is of great importance in drug and gene delivery. For this purpose, a series of molecular dynamics (MD) simulations are conducted to study the penetration of a carbon nanotube (CNT) into a pure POPC cell membrane under various injection velocities, CNT tilt angles and chirality parameters. The simulations are nonequilibrium and all-atom. The force and stress exerted on the nanotube, deformation of the lipid bilayer, and strain of the CNT atoms are inspected during the simulations. We found that a lower nanotube velocity results in successfully entering the membrane with minimum disruption in the CNT and the lipid bilayer, and CNT's chirality distinctly affects the results. Moreover, it is shown that the tilt angle of the CNT influences the nanotube's buckling and may result in destroying the membrane structure during the injection process.


Sign in / Sign up

Export Citation Format

Share Document