Review for "Peculiar protrusions along tanycyte processes face diverse neural and non‐neural cell types in the hypothalamic parenchyma"

Keyword(s):  

2015 ◽  
pp. 147-172 ◽  
Author(s):  
Vivian W. Lau ◽  
Simon R. Platt ◽  
Steven L. Stice ◽  
Franklin D. West


Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2459-2472 ◽  
Author(s):  
John R. Timmer ◽  
Charlotte Wang ◽  
Lee Niswander

In the spinal neural tube, populations of neuronal precursors that express a unique combination of transcription factors give rise to specific classes of neurons at precise locations along the dorsoventral axis. Understanding the patterning mechanisms that generate restricted gene expression along the dorsoventral axis is therefore crucial to understanding the creation of diverse neural cell types. Bone morphogenetic proteins (BMPs) and other transforming growth factor β (TGFβ) proteins are expressed by the dorsal-most cells of the neural tube (the roofplate) and surrounding tissues, and evidence indicates that they play a role in assigning cell identity. We have manipulated the level of BMP signaling in the chicken neural tube to show that BMPs provide patterning information to both dorsal and intermediate cells. BMP regulation of the expression boundaries of the homeobox proteins Pax6, Dbx2 and Msx1 generates precursor populations with distinct developmental potentials. Within the resulting populations, thresholds of BMP act to set expression domain boundaries of developmental regulators of the homeobox and basic helix-loop-helix (bHLH) families, ultimately leading to the generation of a diversity of differentiated neural cell types. This evidence strongly suggests that BMPs are the key regulators of dorsal cell identity in the spinal neural tube.



Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2850
Author(s):  
Tzachy Morad ◽  
Roni Mina Hendler ◽  
Eyal Canji ◽  
Orly Eva Weiss ◽  
Guy Sion ◽  
...  

Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons and glia. However, it is not known if this scaffold affects neural cell migration or elongation of neuronal and astrocytic processes, prerequisites for initiating repair of damage in the nervous system. To address this, hippocampal cells were aggregated into neurospheres and cultivated on aragonite skeleton of the coral Trachyphyllia geoffroyi (Coral Skeleton (CS)), on naturally occurring aragonite (Geological Aragonite (GA)), and on glass, all pre-coated with the oligomer poly-D-lysine (PDL). The two aragonite matrices promoted equally strong cell migration (4.8 and 4.3-fold above glass-PDL, respectively) and axonal sprouting (1.96 and 1.95-fold above glass-PDL, respectively). However, CS-PDL had a stronger effect than GA-PDL on the promotion of astrocytic processes elongation (1.7 vs. 1.2-fold above glass-PDL, respectively) and expression of the glial fibrillary acidic protein (3.8 vs. and 1.8-fold above glass-PDL, respectively). These differences are likely to emerge from a reaction of astrocytes to the degree of roughness of the surface of the scaffold, which is higher on CS than on GA. Hence, CS-PDL and GA-PDL are scaffolds of strong capacity to derive neural cell movements and growth required for regeneration, while controlling the extent of astrocytic involvement. As such, implants of PDL-aragonites have significant potential as tools for damage repair and the reduction of scar formation in the brain following trauma or disease.



1987 ◽  
Vol 105 (1) ◽  
pp. 569-576 ◽  
Author(s):  
E Persohn ◽  
M Schachner

The cellular and subcellular localization of the neural cell adhesion molecules L1 and N-CAM was studied by pre- and postembedding immunoelectron microscopic labeling procedures in the developing mouse cerebellar cortex. The salient features of the study are: L1 displays a previously unrecognized restricted expression by particular neuronal cell types (i.e., it is expressed by granule cells but not by stellate and basket cells) and by particular subcellular compartments (i.e., it is expressed on axons but not on dendrites or cell bodies of Purkinje cells). L1 is always expressed on fasciculating axons and on postmitotic, premigratory, and migrating granule cells at sites of neuron-neuron contact, but never at contact sites between neuron and glia, thus strengthening the view that L1 is not involved in granule cell migration as a neuron-glia adhesion molecule. While N-CAM antibodies reacting with the three major components of N-CAM (180, 140, and 120 kD) show a rather uniform labeling of all cell types, antibodies to the 180-kD component (N-CAM180) stain only the postmigratory granule cell bodies supporting the notion that N-CAM180, the N-CAM component with the longest cytoplasmic domain, is not expressed before stable cell contacts are formed. Furthermore, N-CAM180 is only transiently expressed on Purkinje cell dendrites. N-CAM is present in synapses on both pre- and post-synaptic membranes. L1 is expressed only preterminally and not in the subsynaptic membranes. These observations indicate an exquisite degree of fine tuning in adhesion molecule expression during neural development and suggest a rich combinatorial repertoire in the specification of cell surface contacts.



Brain ◽  
1983 ◽  
Vol 106 (1) ◽  
pp. 101-119 ◽  
Author(s):  
P. G. E. KENNEDY ◽  
G. B. CLEMENTS ◽  
S. MOIRA BROWN


Sign in / Sign up

Export Citation Format

Share Document