Controlling Metal Ion Counter Diffusion in Confined Spaces for In Situ Growth of Mixed Metal MOF Membranes for Gas Separation

ChemNanoMat ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. 1244-1250 ◽  
Author(s):  
Yuxiu Sun ◽  
Hongliang Huang ◽  
Xiangyu Guo ◽  
Zhihua Qiao ◽  
Chongli Zhong
2013 ◽  
Vol 1 (31) ◽  
pp. 8828 ◽  
Author(s):  
Divya Nagaraju ◽  
Deepti G. Bhagat ◽  
Rahul Banerjee ◽  
Ulhas K. Kharul

Carbon ◽  
2010 ◽  
Vol 48 (2) ◽  
pp. 408-416 ◽  
Author(s):  
Youchang Xiao ◽  
Mei Lin Chng ◽  
Tai-Shung Chung ◽  
Masahiro Toriida ◽  
Shouji Tamai ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Willem Kruger ◽  
Rais Latypov

AbstractAn understanding of magma chamber dynamics relies on answering three important yet highly controversial questions: where, why, and how magma chambers crystallize and differentiate. Here we report on a new natural phenomenon—the undercut-embayed chamber floor in the Bushveld Complex—which allows us to address these questions. The undercut-embayed floor is produced by magmatic karstification (i.e. erosion by dissolution) of the underlying cumulates by replenishing magmas that form basal flows on the chamber floor. This results in a few metres thick three-dimensional framework of spatially interconnected erosional remnants that separate the floor cumulates from the overlying resident melt. The basal flow in this environment is effectively cooled through the floor, inducing heterogeneous nucleation and in situ growth against much of its three-dimensional framework. The solidification front thus propagates in multiple directions from the surfaces of erosional remnants. Fractional crystallization may occur within this environment by convective removal of a compositional boundary layer from in situ growing crystals and is remarkably efficient even in very confined spaces. We propose that the way magma crystallizes and differentiates in the undercut-embayed chamber floor is likely common for the evolution of many basaltic magma chambers.


Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


2020 ◽  
Vol 74 (11) ◽  
pp. 866-870
Author(s):  
Lewis C. H. Maddock ◽  
Alan Kennedy ◽  
Eva Hevia

While fluoroaryl fragments are ubiquitous in many pharmaceuticals, the deprotonation of fluoroarenes using organolithium bases constitutes an important challenge in polar organometallic chemistry. This has been widely attributed to the low stability of the in situ generated aryl lithium intermediates that even at –78 °C can undergo unwanted side reactions. Herein, pairing lithium amide LiHMDS (HMDS = N{SiMe3}2) with FeII(HMDS)2 enables the selective deprotonation at room temperature of pentafluorobenzene and 1,3,5-trifluorobenzene via the mixed-metal base [(dioxane)LiFe(HMDS)3] (1) (dioxane = 1,4-dioxane). Structural elucidation of the organometallic intermediates [(dioxane)Li(HMDS)2Fe(ArF)] (ArF = C6F5, 2; 1,3,5-F3-C6H2, 3) prior electrophilic interception demonstrates that these deprotonations are actually ferrations, with Fe occupying the position previously filled by a hydrogen atom. Notwithstanding, the presence of lithium is essential for the reactions to take place as Fe II (HMDS)2 on its own is completely inert towards the metallation of these substrates. Interestingly 2 and 3 are thermally stable and they do not undergo benzyne formation via LiF elimination.


2021 ◽  
Vol 410 ◽  
pp. 126958
Author(s):  
Linnea Selegård ◽  
Thirza Poot ◽  
Peter Eriksson ◽  
Justinas Palisaitis ◽  
Per O.Å. Persson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document