In Vitro Dissolution and In Vivo Bioequivalence Evaluation of Two Metformin Extended‐Release Tablets

Author(s):  
Ziye Zhou ◽  
Chenxiang Wang ◽  
Min Li ◽  
Qin Lan ◽  
Chao Yu ◽  
...  
Author(s):  
SHIREESH KIRAN R ◽  
CHANDRA SHEKAR B ◽  
NAGENDRA BABU B

Objective: The present research work concerns the development of the extended release of Ritonavir floating matrix tablets, designed to prolong the gastric residence time, increase the drug bioavailability, and diminish the side effects of irritating drugs. Methods: The floating tablets of Ritonavir were prepared by direct compression method using different grades of hydroxypropyl methylcellulose (HPMC), crospovidone, Polyox WSR 303, and sodium bicarbonate, as gas generating agent. Evaluation parameters and in vivo radiographic studies were conducted in suitable model. Results: Among all formulations, F21 was chosen as optimized formulation based on evaluation parameters such as floating lag time (33 s), total floating time (>24 h), and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product were shown 98.67% and 91.46±5.02% of drug release, respectively. The main appliance of medication discharge follows zero-order kinetics and non- Fickian transport by coupled diffusion and erosion. In vivo experiments maintained the potentials in extending the gastric residence time in the fasted state in beagle dogs. The mean gastric residence time of the optimized formulation found to be 330 min±40 in the stomach, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for enhanced bioavailability. Conclusion: From in vitro and in vivo radiographic studies, Ritonavir floating tablets estimated to provide novel choice for harmless, inexpensive, and extended release for the effective management of AIDS.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hanxi Yi ◽  
Fan Liu ◽  
Guoqing Zhang ◽  
Zeneng Cheng

The present study evaluated the ability of a modified flow-through method for predicting in vivo performance of immediate release (IR) and extended release (ER) formulations. In vitro dissolution of two model drugs, paracetamol IR tablets and felodipine ER tablets, was investigated under tuned conditions using the modified flow-through method and compared with the compendial quality control (QC) basket method. The in vivo absorption properties of paracetamol IR tablets and felodipine ER tablets were investigated in healthy volunteers. In vitro-in vivo correlation (IVIVC) analysis was performed based on the obtained in vitro and in vivo data. Our results demonstrated that the compendial QC method was not able to reflect in vivo actual absorption, while satisfactory discriminatory power and comparable in vitro dissolution/in vivo absorption were achieved for both paracetamol IR tablets and felodipine ER tablets by the modified flow-through method. This study indicated that the modified flow-through method is a potential tool to reflect in vivo performance of the IR and ER formulations.


1997 ◽  
Vol 13 (4) ◽  
pp. 177-180
Author(s):  
Helena M Payssé ◽  
Marta Vázquez ◽  
Pietro L Fagiolino

Objective: To assess the bioequivalence between two extended-release formulations of theophylline using saliva as the biologic fluid. Design: Randomized two-way crossover design. Participants: Eight healthy, nonsmoking volunteers (7 women, 1 man) between 23 and 41 years of age took a single dose (250 mg) of two extended-release formulations of theophylline (form A, tablet; form B, capsule). Results: Significant differences were found at 2, 4, 6, and 8 hours (p < 0.001), with the in vitro dissolution test between both formulations. ANOVA for AUC, maximum concentration (Cmax), average concentration, and %Cmax – 100 showed significant differences between both formulations in the in vivo trial. Conclusions: The tablet and capsule formulations of extended-release theophylline are bioinequivalent when saliva is used as the biologic fluid for performing these studies.


2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


Author(s):  
Narendar Dudhipala ◽  
Arjun Narala ◽  
Dinesh Suram ◽  
Karthik Yadav Janga

The objective of this present study is to develop a semisolid dispersion (SSD) of zaleplon with the aid of self-emulsifying lipid based amphiphilic carriers (TPGS E or Gelucire 44/14) addressing the poor solubility of this drug. A linear relationship between the solubility of drug with respect to increase in the concentration of lipid surfactant in aqueous medium resulting in AL type phase diagram was observed from phase solubility studies. Fusion method was employed to obtain semisolid dispersions (SSD) of zaleplon which showed high content uniformity of drug. The absence of chemical interactions between the pure drug, excipients and formulations were conferred by Fourier transmission infrared spectroscopic examinations. The photographic images from polarized optical microscopic studies revealed the change in crystalline form of drug to amorphous or molecular state. The superior dissolution parameters of zaleplon from SSD over pure crystalline drug interpreted from in vitro dissolution studies envisage the ability of these lipid surfactants as solubility enhancers. Further, the caliber of TPGS E or Gelucire 44/14 in encouraging the GI absorption of drug was evident with the higher human effective permeability coefficient and fraction oral dose of drug absorbed from SSD in situ intestinal permeation study. In conclusion, in vivo studies in Wister rats demonstrated an improvement in the oral bioavailability of zaleplon from SSD over control pure drug suspension suggesting the competence of Gelucire 44/14 and TPGS E as conscientious carriers to augment the dissolution rate limited bioavailability of this active


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


Sign in / Sign up

Export Citation Format

Share Document