Zeolite Nanocrystals Embedded in Microcellular Carbon Foam as a High‐Performance CO 2 Capture Adsorbent with Energy‐Saving Regeneration Properties

ChemSusChem ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2089-2097 ◽  
Author(s):  
Matjaž Mazaj ◽  
Milan Bjelica ◽  
Ema Žagar ◽  
Nataša Zabukovec Logar ◽  
Sebastijan Kovačič
Author(s):  
A.Ya. Kibirov ◽  

The article uses methods of statistical analysis, deduction and analogy to consider programs at the Federal, regional and economic levels, which provide for measures aimed at improving the technical equipment of agricultural producers. Particular attention is paid to the acquisition of energy-saving, high-performance agricultural machinery and equipment used in the production and processing of agricultural products. An assessment of the effectiveness of state support for updating the material and technical base of agriculture is given. Based on the results of the study, conclusions and recommendations were formulated.


2018 ◽  
Vol 83 (754) ◽  
pp. 987-995
Author(s):  
Hiroko ONODERA ◽  
Nobuyuki SUNAGA ◽  
Eiko KUMAKURA

2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


2013 ◽  
Vol 365-366 ◽  
pp. 917-920
Author(s):  
De Fa Zhang ◽  
Yi Cong Gao

In recent years, industrial sewing machine intelligence can be increased. Compared with the traditional equipment, the new generation of domestic equipment in the "high efficiency, energy saving, special" has realized great-leap-forward development. In the performance, will towards high precision, high efficiency, high performance, intelligent direction; in function, to the miniaturization, multi-function direction; in the program, to the systematic, integrated direction. The design and development of industrial sewing machine digitization design packaging platform are discussed.


2018 ◽  
Vol 13 (21) ◽  
pp. 3212-3221 ◽  
Author(s):  
Yunpeng Huang ◽  
Fen Cui ◽  
Mingqing Hua ◽  
Le Xu ◽  
Yan Zhao ◽  
...  

2018 ◽  
Vol 39 (1) ◽  
pp. 68-75
Author(s):  
S.P. Aadhy ◽  
T. Hema Sinega ◽  
C. Karthikeyan ◽  
S. Akshay ◽  
Mohan Kumar Pitchan ◽  
...  

Abstract This work investigates the possibility of using polyetherimide (PEI) as an energy saving alternative to glass, polymethylmethacrylate (PMMA) and polycarbonate (PC) by carrying out heat transfer analysis and suggests vaporized solvent bonding as a viable bonding technique for the fabrication of PEI. By heat transfer analysis using building energy simulation, it is observed that less energy is expended for space-conditioning of a building with windows made of PEI when compared to glass, PMMA and PC. The compression moulding technique is used to mould PEI and fabrication is done using a solvent mixture of dimethyl sulfoxide and tetrahydrofuran in 1:1 ratio. The optical properties of the bonded specimen are studied using UV-visible spectrophotometry and it is found that PEI does not allow UV wavelength radiation to pass through while transmitting visible wavelengths. The mechanical strength of the bond is tested using lap shear tensile strength test and the type of failure is observed to be cohesive from the structure. This is indicative of the fact that using this particular solvent to bond PEI results in the maximum possible strength.


Sign in / Sign up

Export Citation Format

Share Document