Determination of blood cell subtype concentrations from frozen whole blood samples using TruCount beads

2016 ◽  
Vol 94 (4) ◽  
pp. 660-666 ◽  
Author(s):  
Cecilia Langenskiöld ◽  
Karin Mellgren ◽  
Jonas Abrahamsson ◽  
Mats Bemark
Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 78
Author(s):  
Sevasti Karampela ◽  
Jessica Smith ◽  
Irene Panderi

An ever-increasing need exists within the forensic laboratories to develop analytical processes for the qualitative and quantitative determination of a broad spectrum of new psychoactive substances. Phenylethylamine derivatives are among the major classes of psychoactive substances available on the global market and include both amphetamine analogues and synthetic cathinones. In this work, an ultra-high-performance liquid chromatography-positive ion electrospray ionization tandem mass spectrometric method (UHPLC-ESI-MS/MS) has been developed and fully validated for the determination of 19 psychoactive substances, including nine amphetamine-type stimulants and 10 synthetic cathinone derivatives, in premortem and postmortem whole blood. The assay was based on the use of 1 mL premortem or postmortem whole blood, following solid phase extraction prior to the analysis. The separation was achieved on a Poroshell 120 EC-C18 analytical column with a gradient mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water in 9 min. The dynamic multiple reaction monitoring used in this work allowed for limit of detection (LOD) and lower limit of quantitation (LOQ) values of 0.5 and 2 ng mL−1, respectively, for all analytes both in premortem and postmortem whole blood samples. A quadratic calibration model was used for the 12 quantitative analytes over the concentration range of 20–2000 ng mL−1, and the method was shown to be precise and accurate both in premortem and postmortem whole blood. The method was applied to the analysis of real cases and proved to be a valuable tool in forensic and clinical toxicology.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mustafa Karapirli ◽  
Murat Kizilgun ◽  
Ozgur Yesilyurt ◽  
Husamettin Gul ◽  
Zeki Ilker Kunak ◽  
...  

Objectives. Cyclosporine A (CyA), tacrolimus (TRL), sirolimus (SIR), and everolimus (RAD) are immunosuppressive drugs frequently used in organ transplantation. Our aim was to confirm a robust sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of CyA, TRL, SIR, and RAD in whole-blood samples.Materials and Methods. We used an integrated online solid-phase extraction-LC-MS/MS system and atmospheric pressure ionization tandem mass spectrometry (API-MS/MS) in the multiple reaction monitoring (MRM) detection mode. CyA, TRL, SIR, and RAD were simultaneously analyzed in whole blood treated with precipitation reagent taken from transplant patients.Results. System performance parameters were suitable for using this method as a high-throughput technique in clinical practice. The high concentration of one analyte in the sample did not affect the concentration of other analytes. Total analytical time was 2.5 min, and retention times of all analytes were shorter than 2 minutes.Conclusion. This LC-MS/MS method can be preferable for therapeutic drug monitoring of these immunosuppressive drugs (CyA, TRL, SRL, and RAD) in whole blood. Sample preparation was too short and simple in this method, and it permits robust, rapid, sensitive, selective, and simultaneous determination of these drugs.


2010 ◽  
Vol 397 (2) ◽  
pp. 687-693 ◽  
Author(s):  
Maysa Faisal Suyagh ◽  
Godwill Iheagwaram ◽  
Prashant Laxman Kole ◽  
Jeff Millership ◽  
Paul Collier ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3348-3348
Author(s):  
Cassandra Josephson ◽  
John Roback ◽  
Robert Myers ◽  
Lisa Hallock ◽  
Irene DeMezzo ◽  
...  

Abstract Abstract 3348 Background: Technologies have recently been developed for rapid determination of extended human erythrocyte antigen (xHEA) phenotypes. For example, a semi-automated method using allele-specific oligonucleotides targeted against 32 clinically significant minor RBC antigens has been used to determine donor xHEA phenotypes from whole blood samples. This approach is currently used by blood collection centers and medical centers with blood collection facilities (both sites have access to linked donor whole blood samples). Broader access to xHEA information closer to the point-of-care (e.g. Transfusion Services at a Medical Center without a blood collection facility) may provide an opportunity to enhance patient care by more quickly and broadly providing units with xHEA phenotypes (Klapper et al., 2010.) However, transfusion services would need to use integrally attached segments for testing, and with leukoreduced (LR) RBC units these segments have very low numbers of white blood cells (WBC) (and therefore DNA), potentially limiting analysis. This study was performed to determine whether a HEA-elongation mediated multiplex assay in solution (HEA-eMAP-S) (Xin et al., 2010) could accurately genotype segments from LR-RBC units for 32 clinically significant minor RBC antigens. Methods: Segments from pre-storage LR-RBC units (American Red Cross), < 14 days old, were obtained from a large tertiary care Children's Hospital in the Southeastern US and residual WBC were quantified by flow cytometry. DNA was extracted using an extraction method developed at BioArray SolutionS (BAS) using commercial reagents (Qiagen, Inc., Valencia, CA), and then amplified with the Universal Beadchip™ package (HEA LR-eMAP-S Beadchip™ Kits) which contains allele specific oligonucleotides directed to 32 clinically significant blood group antigens (c, C, e, E, V, VS, K, k, Kpa, Kpa, Jsa, Jsb, Jka, Jkb, Fya, Fyb, M, N, S, s, Lua, Lub, Dia, Dib, Coa, Cob, Doa, Dob, Joa, Hy, Yta, Ytb mutation for hemoglobin S). DNA analysis results were correlated with RBC storage solution, WBC filter type, and serologic minor RBC antigen phenotypes of the units. Results: 102 LR-RBC units from whole blood donations were studied, 74 /102 (73 %) stored in AS-1 and 28 /103 (27 %) in CPDA-1 solution. All AS-1 units were pre-storage LR with Fenwal Sepacell Flex Excel Filters and all CPDA-1 units were pre-storage LR with Whole Blood Fenwal Filters (Fenwal Inc. Lake Zurich, IL). All units demonstrated < 5 × 106 WBC/unit with 47 % having < 4 × 104 WBC/unit, which is at or below the limit of flow cytometric detection. Complete genotyping data was obtained from all samples. Ten samples showing initial indeterminate results on Diego and one for N antigens produced complete results after repeat testing. Fifty-four percent of units were serologically phenotyped for 1–8 antigens by the blood collection center; there was 100% correlation between predicted phenotype from DNA analysis and serology for these units. Conclusions: The HEA LR-eMAP-S DNA analysis can be applied to optimally pre-storage LR-RBC units yielding > 99 % accuracy for all minor red blood cell antigens tested. The ability to perform this type of testing in a hospital transfusion service opens up new possibilities for transfusion services to select from their existing inventory and more efficiently allocate units to recipients with specific phenotypic requirements for RBC units. Disclosures: Josephson: Immucor: Speakers Bureau. DeMezzo:Immucor: Employment. Tanzi:Immucor: Employment. Enriquez:Immucor: Employment. Lin:Immucor: Employment. Hashmi:Immucor: Employment.


2017 ◽  
Vol 41 (22) ◽  
pp. 13567-13575 ◽  
Author(s):  
Zahra Mofidi ◽  
Parviz Norouzi ◽  
Shahram Seidi ◽  
Mohammad Reza Ganjali

Ultra-sensitive in situ determination of amlodipine in whole blood samples was conducted using FFT voltammetry after preconcentration by electromembrane extraction.


Sign in / Sign up

Export Citation Format

Share Document