C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells

2003 ◽  
Vol 19 (5) ◽  
pp. 375-385 ◽  
Author(s):  
Zhen-guo Li ◽  
Weixian Zhang ◽  
Anders A. F. Sima
2006 ◽  
Vol 291 (1) ◽  
pp. F162-F175 ◽  
Author(s):  
Thangavel Samikkannu ◽  
Justin J. Thomas ◽  
G. Jayarama Bhat ◽  
Vaughan Wittman ◽  
Thomas J. Thekkumkara

Although chronic exposure of renal cells to high glucose has been shown to cause cell injury, the effect of acute exposure has not been elucidated. In this study, we demonstrate that acute (10 min) exposure of human proximal tubule epithelial cells (hPTEC) to high glucose (25 mM) induces a time-dependent dual effect consisting of an early proliferation and a late apoptosis. Acute exposure of hPTEC to high glucose induced a twofold increase in DNA synthesis and cell number at 12 h. However, after 36 h, a significant decrease in cell growth is observed, followed by apoptosis. On glucose treatment, both p42/p44 mitogen-activated protein (MAP) kinases and the downstream signaling intermediate NF-κB were phosphorylated and translocated to the nucleus. Pretreatment of cells with MAP kinase and NF-κB-specific inhibitors abolished glucose-induced proliferation. However, these inhibitors were ineffective in preventing glucose-induced apoptosis. Interestingly, conditioned medium from cells exposed to high-glucose concentrations inhibited proliferation and concomitantly induced apoptosis in normal cells, suggesting that the inhibitory effect of glucose occurs through secretion of a secondary factor(s). In parallel to apoptosis, we observed an increased production of reactive oxygen species (ROS). Pretreatment of cells with the antioxidant N-acetyl cysteine reversed glucose-mediated ROS production and apoptosis, suggesting that ROS is involved in apoptosis. Our study demonstrates for the first time that a single high-glucose exposure for 10 min alone is sufficient to elicit proliferation and apoptosis in hPTEC and suggests that episodes of transient increase in glucose may contribute to cell damage leading to epithelial cell dysfunction.


2020 ◽  
Vol 18 ◽  
pp. 205873922098280
Author(s):  
Shuai Guo ◽  
Xujie Yu ◽  
Limei Wang ◽  
Jing Jing ◽  
Yuanyuan Sun ◽  
...  

Type 2 diabetes mellitus (T2DM) is a chronic, low-grade inflammation disease. T follicular helper (Tfh) cells and T cell immunoglobulin and mucin domain 3 (Tim-3) are implicated in many immune diseases. This study aims to explore whether Tim-3 expression on Tfh cells is associated with T2DM progression. White blood cells (WBCs) were harvested from 30 patients with T2DM and 20 healthy donors. The abundance of circulating Tfh cells (cTfh) and the frequency of Tim-3 were analyzed by flow cytometry. Levels of fasting plasma glucose (FPG), insulin, hemoglobin A1C (HbA1C), and fasting plasma C-peptide were measured. Body mass index (BMI) and diabetes duration were also recorded. Patients with T2DM had higher numbers of cTfh cells. In addition, cTfh cells showed a negative correlation with HbA1C and diabetes duration, a positive correlation with fasting plasma C-peptide. The frequency of Tim-3 on cTfh cells was higher among T2DM patients compared with healthy donors. The in vitro experiment showed that high glucose levels increased the abundance cTfh cells but had no effect on Tim-3 expression. Our results suggest that cTfh cells and associated Tim-3 frequency may contribute to the progression of T2DM, and high glucose levels may influence cTfh cells directly.


2015 ◽  
Vol 6 (3) ◽  
pp. 765-771 ◽  
Author(s):  
Guidong Huang ◽  
Jian Mao ◽  
Zhongwei Ji ◽  
Aisikaer Ailati

Some studies have shown that stachyose, as prebiotics, can prevent indirectly colon cancer cell growth by promoting the proliferation of probiotics or producing beneficial materials in the intestine.


Author(s):  
Fang Zhao ◽  
Bo Li ◽  
Yin-zhi Wei ◽  
Bin Zhou ◽  
Han Wang ◽  
...  

2009 ◽  
Vol 459 (2) ◽  
pp. 47-51 ◽  
Author(s):  
Ali. M. Sharifi ◽  
Habib Eslami ◽  
Bagher Larijani ◽  
Jamshid Davoodi

Sign in / Sign up

Export Citation Format

Share Document