Study of cobalt doping control via various routes in thoroughbred horses

2021 ◽  
Author(s):  
Young Beom Kwak ◽  
Jundong Yu ◽  
Eo Jin Im ◽  
Bok Son Jeong ◽  
Hye Hyun Yoo
2021 ◽  
Author(s):  
Binoy Mathew ◽  
Moses Philip ◽  
Zubair Perwad ◽  
Tajudheen K. Karatt ◽  
Marina Rodriguez Caveney ◽  
...  

2014 ◽  
Author(s):  
Angus Yeomans ◽  
Nichol Thompson ◽  
Jennifer Castle-Miller ◽  
David O Bates ◽  
Domingo Tortonese

2020 ◽  
Vol 17 (1) ◽  
pp. 31-39
Author(s):  
Marilene Lopes Ângelo ◽  
Fernanda de Lima Moreira ◽  
Ana Laura Araújo Santos ◽  
Hérida Regina Nunes Salgado ◽  
Magali Benjamim de Araújo

Background:: Tibolone is a synthetic steroid commercialized by Organon under the brand name Livial (Org OD14), which is used in hormone therapy for menopause management and treatment of postmenopausal osteoporosis. Tibolone is defined as a selective tissue estrogenic activity regulator (STEAR) demonstrating tissue-specific effects on several organs such as brain, breast, urogenital tract, endometrium, bone and cardiovascular system. Aims:: This work aims to (1) present an overview of important published literature on existing methods for the analysis of tibolone and/or its metabolites in pharmaceutical formulations and biological fluids and (2) to conduct a critical comparison of the analytical methods used in doping control, pharmacokinetics and pharmaceutical formulations analysis of tibolone and its metabolites. Results and conclusions: : The major analytical method described for the analysis of tibolone in pharmaceutical formulations is High Pressure Liquid Chromatography (HPLC) coupled with ultraviolet (UV) detection, while Liquid Chromatography (LC) or Gas Chromatography (GC) used in combination with Mass Spectrometry (MS) or tandem mass spectrometry (MS/MS) is employed for the analysis of tibolone and/or its metabolites in biological fluids.


Author(s):  
Austin J. Snyder ◽  
Jacob M. Gibbs ◽  
Manoj K. Jamarkattel ◽  
Adam B. Phillips ◽  
Michael J. Heben
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aadil Ahmad Bhat ◽  
Shakeel Ahmad Khandy ◽  
Ishtihadah Islam ◽  
Radha Tomar

AbstractThe present manuscript aims at the synthesis of cesium based halide perovskite nanostructures and the effect of cobalt doping on the structural, optical, lumnisent, charge storage and photocatalytic properties. In a very first attempt, we report the solvothermal synthesis of Co doped CsPbCl3 nanostructures under subcritical conditions. The structural features were demonstrated by X-ray diffraction (XRD) Surface morphology determined cubic shape of the synthesized particles. Doping is an excellent way to modify the properties of host material in particular to the electronic structure or optical properties. Incorporation of Co2+ ions in the perovskite structure tunes the optical properties of the nanostructures making this perovskite a visible light active material (Eg = 1.6 eV). This modification in the optical behaviour is the result of size effect, the crystallite size of the doped nanostructures increases with cobalt doping concentration. Photolumniscance (PL) study indicated that CsPbCl3 exhibited Blue emission. Thermogravametric analysis (TGA) revealed that the nanostructures are quite stable at elavated temperatures. The electrochemical performance depicts the pseudocapacative nature of the synthesized nanostructures and can used for charge storage devices. The charge storage capability showed direct proportionality with cobalt ion concentration. And Finally the photocatalytic performance of synthesized material shows superior catalytic ability degrading 90% of methylene blue (MB) dye in 180 min under visible light conditions.


Sign in / Sign up

Export Citation Format

Share Document