scholarly journals Predicted declines in suitable habitat for greater one‐horned rhinoceros ( Rhinoceros unicornis ) under future climate and land use change scenarios

2021 ◽  
Author(s):  
Ganesh Pant ◽  
Tek Maraseni ◽  
Armando Apan ◽  
Benjamin L. Allen
2021 ◽  
Vol 13 (2) ◽  
pp. 311
Author(s):  
Hongyan Yin ◽  
Yuanman Hu ◽  
Miao Liu ◽  
Chunlin Li ◽  
Jiujun Lv

An estuarine wetland is an area of high ecological productivity and biodiversity, and it is also an anthropic activity hotspot area, which is of concern. The wetlands in estuarine areas have suffered declines, which have had remarkable ecological impacts. The land use changes, especially wetland loss, were studied based on Keyhole and Landsat images in the Liao River delta from 1962 to 2016. The dynamics of the ecosystem service values (ESVs), suitable habitat for birds, and soil heavy metal potential ecological risk were chosen to estimate the ecological effects with the benefit transfer method, synthetic overlaying method, and potential ecological risk index (RI) method, respectively. The driving factors of land use change and ecological effects were analyzed with redundancy analysis (RDA). The results showed that the built-up area increased from 95.98 km2 in 1962 to 591.49 km2 in 2016, and this large change was followed by changes in paddy fields (1351.30 to 1522.39 km2) and dry farmland (189.5 to 294.14 km2). The area of wetlands declined from 1823.16 km2 in 1962 to 1153.52 km2 in 2016, and this change was followed by a decrease in the water area (546.2 to 428.96 km2). The land use change was characterized by increasing built-up (516.25%), paddy fields (12.66%) and dry farmland (55.22%) areas and a decline in the wetland (36.73%) and water areas (21.47%) from 1962–2016. Wetlands decreased by 669.64 km2. The ESV values declined from 6.24 billion US$ to 4.46 billion US$ from 1962 to 2016, which means the ESVs were reduced by 19.26% due to wetlands being cultivated and the urbanization process. The area of suitable habitat for birds decreased by 1449.49 km2, or 61.42% of the total area available in 1962. Cd was the primary soil heavy metal pollutant based on its concentration, accumulation, and potential ecological risk contribution. The RDA showed that the driving factors of comprehensive ecological effects include wetland area, Cd and Cr concentration, river and oil well distributions. This study provides a comprehensive approach for estuarine wetland cultivation and scientific support for wetland conservation.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Author(s):  
Ernest Asamoah ◽  
Linda Beaumont ◽  
Joesph M Maina

Abstract Expanding protected area networks and enhancing their capacities is currently one avenue at the forefront of efforts to conserve and restore global biodiversity. Climate and habitat loss resulting from land use interact synergistically to undermine the potential benefits of protected areas (PAs). Targeting conservation, adaptation and mitigation efforts requires an understanding of patterns of climate and land-use change within the current arrangement of PAs, and how these might change in the future. In this paper, we provide this understanding using predicted rates of temporal and spatial displacement of future climate and land use globally and within PAs. We show that ~ 47% of the world’s PAs—10.6% of which are under restrictive management—are located in regions that will likely experience both climate stress and land-use instability by 2050. The vast majority of these PAs are also distributed across moist biomes and in high conservation value regions, and fall into less-restrictive management categories. The differential impacts of combined land use and climate velocity across protected biomes indicate that climate and land-use change may have fundamentally different ecological and management consequences at multiple scales. Taken together, our findings can inform spatially adaptive natural resource management and actions to achieve sustainable development and biodiversity goals.


2019 ◽  
Vol 7 (8) ◽  
pp. 993-1017 ◽  
Author(s):  
Fabio Farinosi ◽  
Mauricio E. Arias ◽  
Eunjee Lee ◽  
Marcos Longo ◽  
Fabio F. Pereira ◽  
...  

2019 ◽  
Vol 104 (3) ◽  
pp. 495-511 ◽  
Author(s):  
Krissa A. Skogen ◽  
Rick P. Overson ◽  
Evan T. Hilpman ◽  
Jeremie B. Fant

Land-use change is among the top drivers of global biodiversity loss, which impacts the arrangement and distribution of suitable habitat for species. Population-level effects include increased isolation, decreased population size, and changes to mutualistic and antagonistic interactions. However, the extent to which species are impacted is determined by life history characteristics including dispersal. In plants, mating dynamics can be changed in ways that can negatively impact population persistence if dispersal of pollen and/or seed is disrupted. Long-distance dispersal has the potential to buffer species from the negative impacts of land-use change. Biotic vectors of long-distance dispersal have been less frequently studied, though specific taxa are known to travel great distances. Here, we describe population genetic diversity and structure in a sphingophilous species that is experiencing habitat fragmentation through land-use change, Oenothera harringtonii W. L. Wagner, Stockh. & W. M. Klein (Onagraceae). We use 12 nuclear and four plastid microsatellite markers and show that pollen dispersal by hawkmoths drives high gene flow and low population differentiation despite a range-wide gradient of land-use change and habitat fragmentation. By separating the contributions of pollen and seed dispersal to gene flow, we show that most of the genetic parameters are driven by hawkmoth-facilitated long-distance pollen dispersal, but populations with small, effective population sizes experience higher levels of relatedness and inbreeding. We discuss considerations for conservation efforts for this and other species that are pollinated by long-distance dispersers.


2008 ◽  
Vol 113 (D5) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. L. Heald ◽  
D. K. Henze ◽  
L. W. Horowitz ◽  
J. Feddema ◽  
J.-F. Lamarque ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document