Basic properties of anodized porous silicon formed under uniform current density

1994 ◽  
Vol 77 (4) ◽  
pp. 97-105
Author(s):  
Hidekazu Aoyagi ◽  
Akira Motohashi ◽  
Akira Kinoshita ◽  
Tomoyoshi Aono ◽  
Akinobu Satoh
2012 ◽  
Vol 584 ◽  
pp. 290-294 ◽  
Author(s):  
Jeyaprakash Pandiarajan ◽  
Natarajan Jeyakumaran ◽  
Natarajan Prithivikumaran

The promotion of silicon (Si) from being the key material for microelectronics to an interesting material for optoelectronic application is a consequence of the possibility to reduce its device dimensionally by a cheap and easy technique. In fact, electrochemical etching of Si under controlled conditions leads to the formation of nanocrystalline porous silicon (PS) where quantum confinement of photo excited carriers and surface species yield to a band gap opening and an increased radiative transition rate resulting in efficient light emission. In the present study, the nanostructured PS samples were prepared using anodic etching of p-type silicon. The effect of current density on structural and optical properties of PS, has been investigated. XRD studies confirm the presence of silicon nanocrystallites in the PS structure. By increasing the current density, the average estimated values of grain size are found to be decreased. SEM images indicate that the pores are surrounded by a thick columnar network of silicon walls. The observed PL spectra at room temperature for all the current densities confirm the formation of PS structures with nanocrystalline features. PL studies reveal that there is a prominent visible emission peak at 606 nm. The obtained variation of intensity in PL emission may be used for intensity varied light emitting diode applications. These studies confirm that the PS is a versatile material with potential for optoelectronics application.


2014 ◽  
Author(s):  
Tao Wang ◽  
He Yu ◽  
Chao Chen ◽  
Yang Wang ◽  
Yadong Jiang

2021 ◽  
Vol 30 (1) ◽  
pp. 257-264
Author(s):  
Muna H. Kareem ◽  
Adi M. Abdul Hussein ◽  
Haitham Talib Hussein

Abstract In this study, porous silicon (PSi) was used to manufacture gas sensors for acetone and ethanol. Samples of PSi were successfully prepared by photoelectrochemical etching and applied as an acetone and ethanol gas sensor at room temperature at various current densities J= 12, 24 and 30 mA/cm2 with an etching time of 10 min and hydrofluoric acid concentration of 40%. Well-ordered n-type PSi (100) was carefully studied for its chemical composition, surface structure and bond configuration of the surface via X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy and photoluminescence tests. Results showed that the best sensitivity of PSi was to acetone gas than to ethanol under the same conditions at an etching current density of 30 mA/cm2, reaching about 2.413 at a concentration of 500 parts per million. The PSi layers served as low-cost and high-quality acetone gas sensors. Thus, PSi can be used to replace expensive materials used in gas sensors that function at low temperatures, including room temperature. The material has an exceptionally high surface-to-volume ratio (increasing surface area) and demonstrates ease of fabrication and compatibility with manufacturing processes of silicon microelectronics.


1998 ◽  
Vol 84 (11) ◽  
pp. 6345-6350 ◽  
Author(s):  
Zeno Gaburro ◽  
Hoydoo You ◽  
Davorin Babić

2011 ◽  
Vol 181-182 ◽  
pp. 434-438
Author(s):  
Ming Meng ◽  
Yuan Ming Huang

Electrochemical deposition of copper from copper chloride aqueous electrolyte on porous silicon (PS) substrate was investigated in the current density range of 5 mA/cm2to 35 mA/cm2. Scanning electron microscopy (SEM) was utilized to characterize the surface morphology of as-electrodeposited PS. SEM images illustrate that the applied current density has a profound influence on the shape of copper crystal electrodeposited on the top surface of PS films. When the applied current density was fixed at 5mA/cm2, most of the copper crystals are in the shape of cube along with a small number of cuboid-shape. With the increasing current density, cuboid-shaped copper crystals gradually vanished. When the current density is up to the 35mA/cm2, we surprisingly observe that the cube shape predominates simultaneously with the emergence of truncated tetrahedron. A tentative explanation for the growth mechanism of copper crystal having various shapes is explored.


2019 ◽  
Vol 11 (12) ◽  
pp. 1218-1224
Author(s):  
Dao Tran Cao ◽  
Cao Tuan Anh ◽  
Luong Truc Quynh Ngan

So far, while producing porous silicon (PSi) with anodic etching of silicon in an aqueous solution of hydrofluoric acid, many researchers (including us) have obtained the crack-into-pieces (or mosaic) structure. Most of the authors believed that the cause of this structure is the collapse and the cracking of the porous, especially highly porous, silicon layer which took place during the drying of PSi after fabrication. However, our study showed that the mosaic structure was formed right during the course of silicon anodization at high anodic current density. Furthermore, our study also showed that at high anodic current density the real silicon etching has been replaced by the growth of a silicon oxide layer. This is a layer of another substance that grows on silicon, so when the layer is too thick (which is obtained when the anodic current density is too high and/or the anodization time is too long) it will crack, creating mosaic pieces. When the silicon oxide layer is cracked, the locations around the cracks will be etched more violently than elsewhere, creating trenches. Thus, the mosaic structure with mosaic pieces emerged between the trenches has formed.


Sign in / Sign up

Export Citation Format

Share Document