Magnetic suspension system suitable for wide range operation

1979 ◽  
Vol 99 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fumio Matsumura ◽  
Sakae Tachimori
2021 ◽  
Vol 49 (4) ◽  
pp. 977-987
Author(s):  
Fawaz Al-Bakri ◽  
Hasan Ali ◽  
Kafaji Waheed

A nonlinear magnetic suspension system is considered in this paper. A novel online algorithm based on analytical approach is presented to stabilize the suspended mass. The new algorithm employs a single analytical function to create the ball position and velocity profiles. The reference ball position is described by a series of time dependent exponential functions. Boundary conditions at both initial and final states are automatically satisfied. Moreover, feasible ball position and velocity profiles are ensured by evaluating one algorithm parameter (an exponential factor). The exponential factor is analytically computed by minimizing the peak of electrical power. This new algorithm is capable of generating the well-suited coil voltage that guarantees the stability of the system with a small closed-loop command. Gain Shechting method is used to obtain the closed-loop effort in order to track the analytical reference profiles. Compared to the prior magnetic suspension algorithms, the proposed analytical scheme is qualified to handle very large dispersions in initial ball position while satisfying the ball position and coil voltage constraints. Monte-Carlo simulations with change in initial ball position are presented. The simulation results demonstrated the great reliable performance of the proposed algorithm despite the wide range of initial ball position dispersions.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


2011 ◽  
Vol 5 (6) ◽  
pp. 1226-1237
Author(s):  
Kazuya NISHIMURA ◽  
Takeshi MIZUNO ◽  
Yuji ISHINO ◽  
Masaya TAKASAKI ◽  
Yasuhiro SAKAI

Sign in / Sign up

Export Citation Format

Share Document