Voltammetric (Micro)Electrodes for the In Situ Study of Fe2+ Oxidation Kinetics in Hot Springs and S2O Production at Hydrothermal Vents

2008 ◽  
Vol 20 (3) ◽  
pp. 280-290 ◽  
Author(s):  
Katherine M. Mullaugh ◽  
George W. Luther ◽  
Shufen Ma ◽  
Tommy S. Moore ◽  
Mustafa Yücel ◽  
...  
2021 ◽  
Vol 9 (10) ◽  
pp. 2078
Author(s):  
Inês Vitorino ◽  
José Diogo Neves Santos ◽  
Ofélia Godinho ◽  
Francisca Vicente ◽  
Vítor Vasconcelos ◽  
...  

Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1554-1555
Author(s):  
Chen Gu ◽  
Nabil Bassim ◽  
Hatem Zurob

Sign in / Sign up

Export Citation Format

Share Document