scholarly journals Isobaric Expansion Engines Powered by Low‐Grade Heat—Working Fluid Performance and Selection Database for Power and Thermomechanical Refrigeration

2020 ◽  
Vol 8 (11) ◽  
pp. 2000613
Author(s):  
Ahmad K. Sleiti

Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.



Author(s):  
W. Wayne Husband ◽  
Asfaw Beyene

The paper addresses the feasibility of ozone-neutral low grade heat recovery to produce power. The low grade heat source can either be industrial exhaust or solar radiation. Using a scroll expander as a basis for testing, theoretical models yielded a thermal efficiency of 11%, utilizing a non-toxic and non-hazardous working fluid. This project spanned research and development of a system from the comparison of several working fluids, modeling of a theoretical 10 kW unit, the sizing and selection of appropriate system components, and the development of project management tools, in support of its real world development. A cost benefit analysis of the theoretical system shows that solar heat recovery with ozone-neutral refrigerant is a viable option for power generation, at about 1/3 the cost of a comparable photovoltaic system.



Author(s):  
Maoqing Li ◽  
Jiangfeng Wang ◽  
Lin Gao ◽  
Xiaoqiang Niu ◽  
Yiping Dai

Due to environmental constraints, the Organic Rankine Cycle (ORC) is widely used to generate electricity from low grade heat sources. In ORC processes, the working fluid is an organic substance, which has a better thermodynamic performance than water for low grade heat recovery. The design of the turbine which is the key component in the ORC system strongly depends on the operating conditions and on the scale of the facility. This paper presents an experimental study on a prototype of an axial-flow turbine integrated into a regenerative ORC system with R123 as working fluid. The power output is 10kW scale, and the single-stage turbine is selected. The turbine is specially designed and manufactured, and a generator is connected to the turbine directly. In the experiment, the turbine is tested under different inlet pressure conditions (0.6–1.5MPa), different inlet temperature conditions (80–150°C) and different flow rate conditions. The experimental data such as the pressures, temperatures of the turbine inlet and outlet, flow rate, rotational speed, and electrical power generation are analyzed to find their inner relationships. During the test, the turbine rotational speed could reach more than 3010 r/min, while the design rotational speed is 3000 r/min. The isentropic efficiency of the turbine could reach 53%. The maximum electrical power generated by the turbine-generator is 6.57KW. From the test data the peak value of the temperature difference between the inlet and the outlet of the turbine is 53 °C, and the expansion ratio reaches about 11. The computational fluid dynamics (CFD) solvers is also used to analyze the performance of the turbine. The distributions of the pressure, Mach number, and static entropy in the turbine flow passage component are examined and the reasons are also obtained. This study reveals the relationships between the performance of the axial-flow turbine and its inlet and outlet vapor conditions. The experiment results and the CFD results lay a foundation for using this type turbine in the ORC systems which product electrical power from a few KW to MW.



Author(s):  
Zhixin Sun ◽  
Shujia Wang ◽  
Fuquan Xu ◽  
Tielong Wang

Natural gas is considered as a green fuel due to its low environmental impact. LNG contains a large amount of cold exergy and must be regasified before further utilization. ORC (Organic Rankine Cycle) has been proven to be a promising solution for both low grade heat utilization and LNG cold exergy recovery. Due to the great temperature difference between the heat source and LNG, the efficiency of one-stage ORC is relatively small. Hence, some researchers move forward to a two-stage Rankine cycle. Working fluid plays a quite important role in the cycle performance. Working fluid selection of a two-stage ORC is much more challenging than that of a single-stage ORC. In this paper, a two-stage ORC is studied. Heat source temperatures of 100,150 and 200°C are investigated. 20 substances are selected as potential candidates for both the high and low Rankine cycles. The evaporating, condensing and turbine inlet temperatures of both Rankine cycles are optimized by PSO (Particle Swarm Optimization). The results show that the best combination for heat source temperature of 100°C is R161/R218 with the maximum exergy efficiency of 35.27%. The best combination for 150°C is R161/RC318 with the maximum efficiency of 37.84% and ammonia/ammonia with the maximum efficiency of 39.15% for 200°C. Fluids with intermediate critical temperature, lower triple point temperature and lower normal boiling temperature are good candidates.



2014 ◽  
Vol 1070-1072 ◽  
pp. 1808-1811 ◽  
Author(s):  
Han Lv ◽  
Wei Ting Jiang ◽  
Qun Zhi Zhu

Organic Rankine cycle is an effective way to recover low-grade heat energy. In order to improve system performance, for low-temperature waste heat of 120°C and R245fa,R600a,R227ea organic working fluid, using Aspen Plus software conducted simulation by changing the evaporation temperature. Results from these analyses show that decreasing the evaporation temperature, increasing thermal and exergy efficiencies, evaporating pressure, at the same time reduce steam consumption rate.



2012 ◽  
Vol 614-615 ◽  
pp. 515-519 ◽  
Author(s):  
Chao Wei Chang ◽  
Jen Chieh Chang ◽  
Tzu Chen Hung ◽  
Yung Shin Tseng

Organic Rankine cycles (ORCs) could recover low-grade heat to useful energy. The expander is a key element in ORC systems. The expander efficiency is about 35% to 40% in the experiment. This research investigates the transient thermal-hydraulic behavior of 2-D scroll expander using computational fluid dynamics (CFD) approach. The working fluid was assumed to behave like ideal gas. The verification has been compared by mass flow rate between experiment data and CFD simulation. Finally, pitch of the scroll geometry has been selected as the parameter for sensitivity study based on the condition of no change in overall volume. The pressure-volume (P-V) behavior and volumetric efficiency with rotating speed diagram have been discussed on various scroll geometry.



Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 442 ◽  
Author(s):  
Kyoung Kim

The recently proposed organic flash cycle (OFC) has the potential for the efficient recovery of low-grade heat, mainly due to the reduction of irreversibilities in the heat input unit. In the present study, a modified OFC (OFCM) employing a two-phase expander (TPE) and regeneration is proposed and thermodynamic and optimization analysis on this cycle is conducted compared with the basic OFC (OFCB). Six substances are considered as the working fluids. Influences of flash temperature, source temperature, and working fluid are systemically investigated on the system performance. Results showed that OFCM is superior to OFCB in the aspects of power production, thermal, and second-law efficiencies.



Author(s):  
F. David Doty ◽  
Siddarth Shevgoor

Detailed thermodynamic and systems analyses show that a novel hybrid cycle, in which a low-grade (and low-cost) heat source (340 K to 460 K) provides the boiling enthalpy and some of the preheating while a mid-grade source (500 K to 800 K) provides the enthalpy for the final superheating, can achieve dramatic efficiency and cost advantages. Four of the more significant differences from prior bi-level cycles are that (1) only a single expander turbine (the most expensive component) is required, (2) condenser pressures are much higher, (3) the turbine inlet temperature (even with a low-grade geothermal source providing much of the energy) may be over 750 K, and (4) turbine size is reduced. The latent heat of vaporization of the working fluid and the differences in specific heats between the liquid and vapor phases make full optimization (approaching second-law limits) impossible with a single heat source. When two heat sources are utilized, this problem may be effectively solved — by essentially eliminating the pinch point. The final superheater temperature must also be increased, and novel methods have been investigated for increasing the allowable temperature limit of the working fluid by 200 to 350 K. The usable temperature limit of light alkanes may be dramatically increased by (1) accommodating hydrogen evolution from significant dehydrogenation; (2) periodically or continually removing undesired reaction products from the fluid; (3) minimizing the fraction of time the fluid spends at high temperatures. Detailed simulation results are presented for the case where (1) the low-grade heat source (such as geothermal) is 400 K and (2) the mid-grade Concentrated Solar Power (CSP) heat source is assumed to be 720 K. For an assumed condensing temperature of 305 K and working fluid flow rate of 100 kg/s, preliminary simulations give the following: (1) low-grade heat input is 25 MWT; (2) mid-grade heat input is 24 MWT; (3) the electrical output power is 13.5 MWE; and (4) the condenser rejection is only 35 MWT. For comparison, with a typical bi-level ORC generating similar power from this geothermal source alone, the low-grade heat requirement would be ∼100 MWT.



2018 ◽  
Vol 64 ◽  
pp. 06004 ◽  
Author(s):  
Iqbal Md Arbab ◽  
Rana Sohel ◽  
Ahmadi Mahdi ◽  
Close Thomas ◽  
Date Abhijit ◽  
...  

Despite the current energy crisis, a large amount of low grade heat (below 100oC) is being wasted for the lack of cost effective energy conversion technology. In the case of the conventional Organic Rankine Cycle (ORC) based geothermal power stations, only about 20% of available heat can be utilised due to a technological limitation as there is a phase change in the working fluid involved during the addition of heat which decreases utilisation effectiveness of the system. Therefore, in this paper, a trilateral flash cycle (TFC) based system has been studied to find out its prospect for utilizing more power from the same heat resources as the ORC. The TFC is a thermodynamic cycle that heats the working fluid as a saturated liquid from which it starts its expansion stage. The flash expansion is achieved by feeding the saturated high-pressured liquid working fluid through a convergent-divergent nozzle at which point it undergoes a flash expansion in the low-pressure environment of the generator housing. The momentum of the working fluid is extracted via a Pelton wheel and the cycle is completed with working fluid condensation and pressurisation. The analytical comparative study between the ORC and TFC based system shows that the TFC has about 50% more power generation capability and almost zero contribution on global warming.



Sign in / Sign up

Export Citation Format

Share Document