Active control of the seismic response of structures by combined use of base isolation and absorbing boundaries

1992 ◽  
Vol 21 (6) ◽  
pp. 525-541 ◽  
Author(s):  
J. E. Luco ◽  
A. Mita ◽  
H. L. Wong
2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


2021 ◽  
Vol 147 (5) ◽  
pp. 04021016
Author(s):  
Angelo Di Egidio ◽  
Stefano Pagliaro ◽  
Cristiano Fabrizio

2021 ◽  
pp. 277-289
Author(s):  
Ahmed Bilal ◽  
Zaid Mohammad ◽  
Abdul Baqi

Author(s):  
Kazuto Seto ◽  
Chinori Iio ◽  
Shigeru Inaba ◽  
Shingo Mitani ◽  
Fadi Dohnal ◽  
...  

This paper presents a vibration control method for multiple high-rise buildings against large earthquake motion. This method is called as “Connected Control Method (CCM)” and has the merit of obtaining enough control force to protect high-rise buildings from large earthquakes using passive and semiactive devices. In this paper, first a modeling approach for four scaled building structures is shown and effectiveness of the CCM using LQ control approach for them is demonstrated by seismic response control results. Next, in order to reduce the supplied power, a semi-active control approach in place of active control is applied for the CCM. For this purpose, a new MR damper is developed and designed to have a close performance with results of the LQ control. This performance is verified by measured frequency responses.


Sign in / Sign up

Export Citation Format

Share Document