scholarly journals DESIGN METHOD FOR BASE-ISOLATION STRUCTURE COMBINED WITH ACTIVE CONTROL BASED ON THE LIMITATION CONDITIONS OF THE RESPONSES AND CONTROL FORCE

Author(s):  
Yinli CHEN ◽  
Daiki SATO ◽  
Kou MIYAMOTO ◽  
Jinhua SHE
Author(s):  
Keigo Nakamura ◽  
Nanako Miura ◽  
Akira Sone

In this research, the focus is on the energy problem in active vibration control of a seismic isolation device using self-powered active control that regenerates electric power from kinetic energy of vibration system and uses it as control power. In recent years, it is proposed to install semi-active control or active control in an isolated structure to deal with seismic waves of various periods. However, since energy is required for control, there is a problem that the desired response reduction performance cannot be achieved when energy supply is interrupted at the time of a power outage. In our previous device, power is always given to the motor to control, thus power consumption is high. Therefore, the purpose of this research is to propose input method of control force that can reduce control power while keeping base isolation performance by classifying the role of the control force for each control phase and considering various combinations of input control force.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ma Yong-Quan ◽  
Qiu Hong-Xing

The integrated multiobjective optimal design method for structural active control system is put forward based on improved Pareto multiobjective genetic algorithm, through which the position of actuator is synchronously optimized with active controller. External excitation is simulated by stationary filtered white noise. The root-mean-square (RMS) of structural response and active control force can be achieved by solving Lyapunov equation in the state space. The design of active controller adopts linear quadratic regulator (LQR) control algorithm. Minimum ratio of the maximum RMS of controlled structural displacement divided by the maximum RMS of uncontrolled structural displacement and minimum ratio of the maximum RMS of controlled structural shear divided by the maximum RMS of uncontrolled structural shear, together with minimization of the sum of RMS of active control force, are used as the three objective functions of multiobjective optimization. The optimization process takes the impact of structure and excitation parameter on the optimized results. An eight-storey six-span plane steel frame was used as an emulational example to demonstrate the validity of this optimization method. Results show that the proposed integrated multiobjective optimal design method is simple, efficient, and practical with good universality.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


2014 ◽  
Vol 687-691 ◽  
pp. 3102-3105
Author(s):  
Qin Zhang

Integration with Internet is the development tendency of industrial control network, and embedded Internet technique is the key of implementation. By analyzing field bus Technology and combining actual demand, the paper proposes dial-up high-density programmable logic device solution of remote embedded measurement and control equipment. For the purpose of implementing reuse of design modules and upgrading requirement, the paper systematically expounds top-down hierarchy design method for implementing functional module division. According to the difference of implementation complexity because of the difference of functions, the paper finally analyzes the characteristics and applications of programmable device, and proposes the improvement direction.


Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


2014 ◽  
Vol 614 ◽  
pp. 107-112
Author(s):  
Xiao Yu Yin ◽  
Xian Ping Xie ◽  
Zhen Li ◽  
Jian Gong Li ◽  
Ting Jun Wang ◽  
...  

Expert systems, or knowledge based systems, are programs in which the answer to a user-posed question is reached by logical or plausible inference rather than strictly by calculation, although calculation routines can form a major part of an expert system. Based on the integration of expert system technology and optimization technology, an intelligent computer aided design method for mine ventilation systems is proposed in this paper. Firstly, the structure and control algorithm of the intelligent design system are explored. Secondly, the knowledge types required for the mine ventilation expert system and the acquiring method of knowledge are discussed. Finally, the inference method of this expert system is put forward.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ming Zhang ◽  
Xuelong Hu ◽  
Hongtao Huang ◽  
Guangyao Chen ◽  
Shan Gao ◽  
...  

This study investigated the mechanism, prevention measures, and control methods for earthquake disasters typically occurring in mines with thick and hard rock strata. A mine stope with large faults and thick hard rock strata in Hebei Province was taken as the background study object. Then, theoretical analysis and numerical simulation methods were adopted in conjunction with field monitoring to explore how horizontal stress evolves in the thick and hard hanging roofs of such mines, potentially leading to mining earthquakes. Then, based on the obtained results, a mining design method was proposed to reduce the horizontal stress levels of earthquake mitigation. The results showed that, under the control of large faults, semiopen and semiclosed stopes with thick hard rock strata are formed, which cause influentially pressurized and depressurized zones during the evolution of the overburden movements and horizontal stress. It was determined that the stress concentrations mainly originated from the release and transfer of horizontal stress during the rock fractures and movements in the roof areas, which were calculated using a theoretical estimation model. The horizontal stress concentrations formed “counter torques” at both ends of the thick and hard strata, which prevented the support ending due to tensile failures. As a result, the limit spans were increased. This study proposed a mining strategy of using narrow working faces, strip mining processes, and reasonable mining speeds, which could effectively reduce horizontal stress concentrations and consequently prevent and control mining earthquakes. This study’s research results were successfully applied to the mining practices in working face 16103.


Author(s):  
Atefeh Saedian ◽  
Hassan Zarabadipoor

This paper presents an active backstepping design method for synchronization and anti-synchronization of two identical hyperchaotic Chen systems. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. Numerical simulations are shown to verify the results.


Sign in / Sign up

Export Citation Format

Share Document