Residential energy efficiency programs, retrofit choices and greenhouse gas emissions savings: a decade of energy efficiency improvements in Waterloo Region, Canada

2011 ◽  
Vol 35 (15) ◽  
pp. 1312-1324 ◽  
Author(s):  
Christina E. Hoicka ◽  
Paul Parker
2019 ◽  

Programs that encouraged investments in residential energy efficiency had limited returns in several impact evaluations in real-world settings. Relatively small impacts on energy savings coupled with low take-up meant that encouraging these investments through information campaigns and subsidies was not a cost-effective strategy to reduce greenhouse gas emissions.


2020 ◽  
Vol 10 (20) ◽  
pp. 7112
Author(s):  
Valeria Todeschi ◽  
Guglielmina Mutani ◽  
Lucia Baima ◽  
Marianna Nigra ◽  
Matteo Robiglio

Urban rooftops are a potential source of water, energy, and food that contribute to make cities more resilient and sustainable. The use of smart technologies such as solar panels or cool roofs helps to reach energy and climate targets. This work presents a flexible methodology based on the use of geographical information systems that allow evaluating the potential use of roofs in a densely built-up context, estimating the roof areas that can be renovated or used to produce renewable energy. The methodology was applied to the case study of the city of Turin in Italy, a 3D roof model was designed, some scenarios were investigated, and priorities of interventions were established, taking into account the conditions of the urban landscape. The applicability of smart solutions was conducted as a support to the review of the Building Annex Energy Code of Turin, within the project ‘Re-Coding’, which aimed to update the current building code of the city. In addition, environmental, economic, and social impacts were assessed to identify the more effective energy efficiency measures. In the Turin context, using an insulated green roof, there was energy saving in consumption for heating up to 88 kWh/m2/year and for cooling of 10 kWh/m2/year, with a reduction in greenhouse gas emissions of 193 tCO2eq/MWh/year and 14 tCO2eq/MWh/year, respectively. This approach could be a significant support in the identification and promotion of energy efficiency solutions to exploit also renewable energy resources with low greenhouse gas emissions.


Energy ◽  
2016 ◽  
Vol 103 ◽  
pp. 672-678 ◽  
Author(s):  
Ashkan Nabavi-Pelesaraei ◽  
Homa Hosseinzadeh-Bandbafha ◽  
Peyman Qasemi-Kordkheili ◽  
Hamed Kouchaki-Penchah ◽  
Farshid Riahi-Dorcheh

Sign in / Sign up

Export Citation Format

Share Document