Concentrated solar energy‐driven carbon black catalytic thermal decomposition of methane

Author(s):  
Alberto Boretti
2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Tobias Marquardt ◽  
Sebastian Wendt ◽  
Stephan Kabelac

Economically and ecologically, the thermal decomposition of methane is a promising process for large scale hydrogen production. In this experimental study, the non-catalytic decomposition of methane in the presence of small amounts of carbon dioxide was analyzed. At large scales, natural gas or biomethane are possible feedstocks for the thermal decomposition and can obtain up to 5% carbon dioxide. Gas recycling can increase the amount of secondary components even further. Experiments were conducted in a packed flow reactor at temperatures from 1250 to 1350 K. The residence time and the amounts of carbon dioxide and hydrogen in the feed were varied. A methane conversion of up to 55.4% and a carbon dioxide conversion of up to 44.1% were observed. At 1300K the hydrogen yield was 95% for a feed of methane diluted in nitrogen. If carbon dioxide was added to the feed at up to a tenth with regard to the amount of supplied methane, the hydrogen yield was reduced to 85%. Hydrogen in the feed decreases the reaction rate of the methane decomposition and increases the carbon dioxide conversion.


2019 ◽  
Vol 131 ◽  
pp. 13-27 ◽  
Author(s):  
Mohammad Javad Afroughi ◽  
Farjad Falahati ◽  
Larry W. Kostiuk ◽  
Jason S. Olfert

2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055214
Author(s):  
A. Kosinska ◽  
B. V. Balakin ◽  
P. Kosinski

Author(s):  
S. Kh. Suleimanov ◽  
V. G. Babashov ◽  
M. U. Dzhanklich ◽  
V. G. Dyskin ◽  
M. I. Daskovskii ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 723
Author(s):  
Mahesh Muraleedharan Nair ◽  
Stéphane Abanades

The CeO2/CeO2−δ redox system occupies a unique position as an oxygen carrier in chemical looping processes for producing solar fuels, using concentrated solar energy. The two-step thermochemical ceria-based cycle for the production of synthesis gas from methane and solar energy, followed by CO2 splitting, was considered in this work. This topic concerns one of the emerging and most promising processes for the recycling and valorization of anthropogenic greenhouse gas emissions. The development of redox-active catalysts with enhanced efficiency for solar thermochemical fuel production and CO2 conversion is a highly demanding and challenging topic. The determination of redox reaction kinetics is crucial for process design and optimization. In this study, the solid-state redox kinetics of CeO2 in the two-step process with CH4 as the reducing agent and CO2 as the oxidizing agent was investigated in an original prototype solar thermogravimetric reactor equipped with a parabolic dish solar concentrator. In particular, the ceria reduction and re-oxidation reactions were carried out under isothermal conditions. Several solid-state kinetic models based on reaction order, nucleation, shrinking core, and diffusion were utilized for deducing the reaction mechanisms. It was observed that both ceria reduction with CH4 and re-oxidation with CO2 were best represented by a 2D nucleation and nuclei growth model under the applied conditions. The kinetic models exhibiting the best agreement with the experimental reaction data were used to estimate the kinetic parameters. The values of apparent activation energies (~80 kJ·mol−1 for reduction and ~10 kJ·mol−1 for re-oxidation) and pre-exponential factors (~2–9 s−1 for reduction and ~123–253 s−1 for re-oxidation) were obtained from the Arrhenius plots.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Emmi Välimäki ◽  
Lasse Yli-Varo ◽  
Henrik Romar ◽  
Ulla Lassi

The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review, methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes, known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane, respectively, appear to have the greatest potential for hydrogen production. In particular, the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.


Sign in / Sign up

Export Citation Format

Share Document