scholarly journals Effect of roof movement on gas flow in an extremely thick coal seam under fully mechanized sublevel caving mining conditions

2019 ◽  
Vol 8 (3) ◽  
pp. 677-688
Author(s):  
Haijun Guo ◽  
Xianzhang Li ◽  
Hao Cui ◽  
Kaixuan Chen ◽  
Yuanyuan Zhang
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Cheng Wang ◽  
Zuqiang Xiong ◽  
Chun Wang ◽  
Yuli Wang ◽  
Yaohui Zhang

This research presents the grouting method of preventing rib sloughage which severely impacts mine safety and longwall retreat speed in thick coal seam with numerical simulation and laboratory tests. Based on the analysis of the plastic failure mode of five types of coal seam, roof strata ahead of the longwall face, and fractures developed in the coal seam, the following results are drawn, the range and degree of plastic failure generated in the coal seam and roof strata ahead of the longwall face gradually decreased as the coal mass strength increased; the grouting boreholes are essentially laid out within the coal rib instead of the roof. For a particular case of a coal mine in Shanxi province, a novel cement-based material was grouted, which fulfilled the reinforcement requirements under the tectonic stress regions and front abutment zones. Besides, the grouting borehole construction requested predrilled boreholes, full borehole intubation, lengthened hole sealing, and multiple-step drilling and grouting. This study can provide a theoretical framework of a design overview and practical basis for similar mining conditions in other coalfields.


2012 ◽  
Vol 170-173 ◽  
pp. 279-282
Author(s):  
Nan Nan Zhao ◽  
Yong Jie Yang ◽  
Chang Qing Wang

Take 3 coal repeated mining of Luxi colliery as research background, overburden strata rupture development rules in repeated mining of thick coal seam were studied by using the methods of field measurement. The results indicate that the height of overburden crack belt reduced along with the increase of goaf development time; the crack belt height of upper layer is 34.73m, the ratio of crack height and mining thickness is 15.1, the crack belt height of lower layer increased to 41.51m, but the increased trend declined, the ratio is only 12.14, the development height after up-layer was excavated is 83.6% of the height after two coalface were excavated. The results have important guiding sense for predicting overburden rupture rules in the similar mining conditions and improving the upper limit.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xin Kang ◽  
Sheng-li Yang ◽  
Ping Zhan ◽  
Liang-hui Li

Application of a horizontal section top-coal caving in a steeply inclined thick coal seam not only effectively resolves the problem of the large dip angle of the coal seam and slipping and dumping of mining equipment but also significantly reduces the tunnel drivage ratio and improves the extraction yield. In addition, it allows for a safe and efficient mining from a steeply inclined thick coal seam. In this paper, the roof fracture pattern of a steeply inclined thick coal seam has been studied by a similar simulation experiment. The results of the simulation are consistent with those of the numerical calculations, thus verifying the accuracy of the simulation. The experimental simulation results show that the roof can form a step-like toppling failure pattern after drawing the coal, and it is difficult to release a triangular coal mass near the floor, which is the main concentration area of coal loss. The numerical simulation results show that, with the excavation of the coal seam, the rock mass around the goaf produces plastic failure, and the damage is mainly concentrated in the roof area. The upper part of the goaf mainly shows a tensile failure, while the other areas mainly show yield failure.


2014 ◽  
Vol 522-524 ◽  
pp. 1394-1398
Author(s):  
Tao Qin ◽  
Yong Li Liu ◽  
Chang Ji Dong ◽  
Ping Wang

For composite thick seams have been incidents burst power disasters, and seriously affect the safety of the mine production.Based on the engineering background in coal mine, through the same mining conditions, stope mining process simulation which happens in single hard coal, soft coal and single composite thick Coal Seam of Island face were studied through comparative analysis by FLAC3D numerical simulation technology. Tendency and trend of the pressure distribution results obtain through the comparative analysis . The research results has been applied in the actual coal mining.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Han Gao ◽  
Xuanping Gong ◽  
Xiaoyu Cheng ◽  
Rui Yu ◽  
Hui Wang

In order to solve the problem of pressure relief gas control under high-strength fully mechanized top-coal caving in low-gas-thick-coal seams, this paper studies the evolution of overburden structures and the distribution characteristics of fissure fields during the initial and stable period of working face by physical simulation and numerical analysis. The mathematical model of coupling between mining fracture field and pressure relief gas field is established. The results reveal the distribution characteristics of pressure relief gas field that considers mining-induced fissure field. According to the distribution of mining gas accumulation area, the high directional long boreholes have been put forward to control the pressure relief gas in goafs, and the effect has been tested. The results show that the initial pressure and three periodic pressures occurred from the cutting hole to 135 m in the initial mining period of the working face. The height of collapse zone developed to 22 m, and fracture height developed to 75 m. The development height of caving zone is stable at 25∼27 m, and the development height of fissure zone is stable at 75∼95 m. The process and distribution of pressure relief gas flow in goaf are obtained by solving the numerical model of pressure relief gas flow in mining fissure field. The gas accumulation area is located within 25∼55 m from return laneway and 25∼50 m from the roof of coal seam. After the implementation of high directional long drilling gas drainage technology in the initial mining period and the stable mining period, good results have been obtained in the gas control, where the average concentration of gas extraction is 5.8%, the average gas flow rate is 0.71 m3/min, and the gas concentration in upper corner and return air is less than 0.8%. The results can provide a reference for pressure relief gas control under similar conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongkang Yang ◽  
Jie Wei ◽  
Chenlong Wang

The study of the effects of mining height on overlying strata movement and underground pressure characteristics during extremely thick coal seam fully mechanized sublevel caving mining is very important for choosing the reasonable mining height and the support. Based on the geological setting and mining conditions at the Xiegou Coal Mine, the results of the physical simulation test and the numerical simulation technology will be used. Some conclusions can be drawn as follows: (1) With the mining height increase, the top coal gradually converted from tensile failure to shear damage, and the coal wall gradually transformed from shear failure to tensile damage. (2) When the mining height is 7.5 m, the full-seam collapse distance, the immediate first weighting interval, and the main roof first weighting length are shorter than that when the mining height is 4m, and the periodic weighting length for the two mining heights is almost the same. (3) With mining height increase, the initial mining stage and the transition stage become shorter, and the production rates become better. (4) The law of the abutment pressure peak and the sphere of influence increase slightly, and the working resistance of support needed to be strengthened. (5) The subsidence quantity of the top coal in the control area increases along with the mining height in a quadratic polynomial way but decreases along with the initial supporting force in a negative logarithmic rule. (6) After assigning the subsidence, the regression relation between the initial supporting force and the mining height is a quadratic polynomial.


2017 ◽  
Vol 21 (suppl. 1) ◽  
pp. 275-284
Author(s):  
Mingzhong Gao ◽  
Ting Ai ◽  
Zhiqiang Qiu ◽  
Zetian Zhang ◽  
Jing Xie

Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian?an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.


2013 ◽  
Vol 671-674 ◽  
pp. 1150-1155
Author(s):  
Xin Xian Zhai ◽  
Yan Wei Zhai ◽  
Shi Wei Zhang

Qianqiu Coal Mine, Yima Coal Group Company Limited, China, has been mining the gently-inclined and hugely-thick coal seam #2-3. The overburden above the coal seam has hugely-thick conglomerate strata with more than 400m thickness, which has significant effects on the strata behaviors of the coal face with sublevel caving. Therefore, study on strata behaviors has an important practical significance to surrounding rocks control and safety production at the coal face. Using theoretical analysis and field observation methods, the following conclusions can be drawn: (1) the surrounding rocks of the coal face with sublevel caving belongs to difficult control one, i.e., it is the surrounding rocks control of roof and floor at the coal face that is difficult. At last, hydraulic supports with sublevel caving of pattern ZF7000-18/28 and their reasonable matching equipment were chosen. (2) The law of strata behaviors of the coal face was observed. Strata behaviors of the coal face were significant and inconsistent at different coal face zones. The parameters of roof weighting interval and roof weighting strength at the coal face were obtained. The maximum value of supporting resistance during periodical weighting was 4307.70kN, being 61.54% of supports rating resistance. Therefore, the supports at the coal face had a higher reliability. Mine production-model with one-mine and one-face can be realized, which promotes the construction of a modernization mine with high production and high efficiency.


Sign in / Sign up

Export Citation Format

Share Document