scholarly journals Research on the Influence of Mining Height on the Movement Characteristics of Overlying Strata during Extremely Thick Coal Seam Fully Mechanized Sublevel Caving Mining

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongkang Yang ◽  
Jie Wei ◽  
Chenlong Wang

The study of the effects of mining height on overlying strata movement and underground pressure characteristics during extremely thick coal seam fully mechanized sublevel caving mining is very important for choosing the reasonable mining height and the support. Based on the geological setting and mining conditions at the Xiegou Coal Mine, the results of the physical simulation test and the numerical simulation technology will be used. Some conclusions can be drawn as follows: (1) With the mining height increase, the top coal gradually converted from tensile failure to shear damage, and the coal wall gradually transformed from shear failure to tensile damage. (2) When the mining height is 7.5 m, the full-seam collapse distance, the immediate first weighting interval, and the main roof first weighting length are shorter than that when the mining height is 4m, and the periodic weighting length for the two mining heights is almost the same. (3) With mining height increase, the initial mining stage and the transition stage become shorter, and the production rates become better. (4) The law of the abutment pressure peak and the sphere of influence increase slightly, and the working resistance of support needed to be strengthened. (5) The subsidence quantity of the top coal in the control area increases along with the mining height in a quadratic polynomial way but decreases along with the initial supporting force in a negative logarithmic rule. (6) After assigning the subsidence, the regression relation between the initial supporting force and the mining height is a quadratic polynomial.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xin Kang ◽  
Sheng-li Yang ◽  
Ping Zhan ◽  
Liang-hui Li

Application of a horizontal section top-coal caving in a steeply inclined thick coal seam not only effectively resolves the problem of the large dip angle of the coal seam and slipping and dumping of mining equipment but also significantly reduces the tunnel drivage ratio and improves the extraction yield. In addition, it allows for a safe and efficient mining from a steeply inclined thick coal seam. In this paper, the roof fracture pattern of a steeply inclined thick coal seam has been studied by a similar simulation experiment. The results of the simulation are consistent with those of the numerical calculations, thus verifying the accuracy of the simulation. The experimental simulation results show that the roof can form a step-like toppling failure pattern after drawing the coal, and it is difficult to release a triangular coal mass near the floor, which is the main concentration area of coal loss. The numerical simulation results show that, with the excavation of the coal seam, the rock mass around the goaf produces plastic failure, and the damage is mainly concentrated in the roof area. The upper part of the goaf mainly shows a tensile failure, while the other areas mainly show yield failure.


2011 ◽  
Vol 347-353 ◽  
pp. 183-188 ◽  
Author(s):  
Ping Wei Xing ◽  
Xuan Min Song ◽  
Yu Ping Fu

Based on the high mining height of large cutting height workface in shallow thick coal seam and the few falling waste rock in goaf, the key roof can not be supported effectively, the facture mechanical model of key roof was established. The theoretical calculation formula of key stratum fracture step and working resistance of support were obtained by using fracture mechanics. The results show that the fracture step of key roof relate to not only the mechanical character of key roof and the load of overlaying rock seam, but also the working resistance of support and horizontal pressure in key roof. The reasonable working resistance of support and the step of roof fracture were analyzed in 1-2coalmine 51104 face of a mine in Dongsheng area. The theoretical results are well agreeable with the field measured results.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gaochuan Guo ◽  
Yongkang Yang

The basis of traditional ground pressure and strata control techniques is the key strata theory, wherein the position of the key stratum can easily be determined for coal seams with regular thickness and without goaf. However, in the case of mining ultrathick coal seams underneath goaf, the traditional methods used for the calculation of key stratum position need to be improved in order to account for the additional coal seam thickness and the presence of an upper goaf. This study analyzed the failure height and collapse characteristics of overlying strata during excavation for determining the structure of the failed overlying strata. The results indicate that the intercalation and overlying strata gradually evolve into a large “arch structure” and a small “arch structure” during longwall mining, respectively. A mechanical model of the bearing characteristics of the interlayer key strata structure was established according to the structure of the intercalation rock layer, which is a hinged block structure. The results of the model indicate that the maximum principal stress occurs when the key strata portion of the arch structure bears the overlying load. Consequently, the movement and position of the interlayer key strata can be evaluated throughout the mining process of the ultrathick coal seams underneath goaf. This method was used to determine the position of interlayer key stratum of overlying strata in Xiegou coal mine. And the results agree with that of the engineering practice. The results are significant to determine the key strata position during ultrathick coal seam underneath goaf longwall mining.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingxiang Huang ◽  
Jinlong Zhou ◽  
Jian Cao

The fully mechanized mining with large mining height is the main method for high yield and efficient coal mining in China. The key stratum structure (KSS) is the basis of revealing the mechanism of roof weighting and determination of support working resistance of the longwall face with large mining height (LFLMH) in the shallow coal seam. The height of the caving zone at LFLMH is large, the thick immediate roof forms the “short cantilever beam” structure commonly, and the hinge layer of the overlying key stratum will move upward to the higher position. The “high position oblique step voussoir beam” structure of single-key stratum (SKS) and “oblique step voussoir beam and voussoir beam” structure of double-key stratum (DKS) in the shallow coal seam were proposed with physical simulation and Universal Distinct Element Code (UDEC). The analysis of the KSS and numerical simulation reveals the mechanism of strong roof weighting at the SKS longwall face and large-small alternate periodic weighting at the DKS longwall. It is concluded that the large static load caused by the “equivalent immediate roof (EIR)” is the basic load, and the instability load of the KSS is the additional dynamic load of support. Besides, the calculation methods of the reasonable support working resistance at LFLMH were obtained and verified with engineering applications.


2018 ◽  
Vol 53 ◽  
pp. 04024
Author(s):  
Jianghua Li ◽  
Yuguang Lian ◽  
Hongjie Li

Some coal seams belong to cretaceous strata in the east of Inner Mongolia, China. There are obvious differences of rock characteristics and mechanical properties between Cretaceous and Carboniferous- Permian strata. The overburden failure characteristics of extra-thick coal seam with slicing full-mechanized caving mining are studied through rock mechanics experiment, field observation and theoretical analysis and so on. Water disaster prevention and control method of roof and goaf is put forward under the condition of extra-thick coal seam with slicing full-mechanized caving mining. The final research results include: (1) The rock of cretaceous strata has low strength and soft characteristic, its stability is very poor, cretaceous rock belongs to weak type; (2) Under the condition of extra-thick coal seam with slicing full-mechanized caving mining, the ratio between caving zone and mining height of field observation result is 4.58~4.74, the observation results of two boreholes are close; (3) It is significantly effective to prevent and control water disaster from goaf through roof hole drainage method, coal and rock safety pillar remain method is used to limit mining height under the Tertiary gravel aquifer, which makes the working face exploit safely.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kai Wang ◽  
Tong Zhao ◽  
Kaan Yetilmezsoy ◽  
Xiaoqiang Zhang

Serious rib spalling and low recovery rate problems caused by the poor top-coal caving property (TCCP) were investigated in fully mechanized caving mining with large mining height (FMCMLMH) of extremely thick coal seam. For this aim, theoretical calculation, numerical simulation, and engineering application were applied to study the reasonable cutting-caving ratio under the influence of different factors. The calculation formula of reasonable cutting height in FMCMLMH was obtained, and effective factors were determined. Moreover, Ft (the top-coal yield failure coefficient) and Fw (the coal wall yield failure coefficient) were defined, and each factor was fitted by using a linear regression equation. The minimum Ft of fully fractured top coal was 0.6, and the main influencing factors were buried depth and Protodyakonov coefficient. The maximum Fw of the stable coal wall was 1.5, and the main influencing factors were buried depth and cutting height. According to the relationship between coal wall stability and recovery rate, the relationship between coal seam strength and top-coal thickness at different cutting heights was obtained, and the mining zone was divided into four subzones. Engineering application showed that the optimal cutting height of Xiegou Coal Mine was 4 m, the cutting-caving ratio was 1 : 2.75, and the recovery rate could reach more than 85%, which was the most reasonable.


2013 ◽  
Vol 718-720 ◽  
pp. 1934-1937
Author(s):  
Meng Lin Xu ◽  
De Shen Zhao

In order to delve better what research methodology of height of water conducted fissure zone are, especially in mining of thick coal seam with soft, 3-D numerical simulationin was used to S2S9 face of Da Ping mine, it reveals the damage movement rule of overlying strata in mining roof-coal in "Three Soft" coal seam in the end . Thus it confirms the height of the water flowing fractured zone and tests the simulation result by the theoretical analysis and simple hydrology observation result. it provides a new idea for the application soft overburden in extra- thick seam mining technology.


Sign in / Sign up

Export Citation Format

Share Document