A Review of Satellite Cloud Condensation Nuclei Retrieval Methods for Evaluation with In-situ Measurements from Aircraft-Based Observations in the Marine Boundary Layer

2021 ◽  
Author(s):  
Kevin Sanchez ◽  
David Painemal ◽  
Matthew Brown ◽  
Ewan Crosbie ◽  
Francesca Gallo ◽  
...  
2019 ◽  
Author(s):  
Huisheng Bian ◽  
Karl Froyd ◽  
Daniel M. Murphy ◽  
Jack Dibb ◽  
Mian Chin ◽  
...  

Abstract. Atmospheric sea salt plays important roles in marine cloud formation and atmospheric chemistry. We performed an integrated analysis of NASA GEOS model simulations run with the GOCART aerosol module, in situ measurements from the PALMS and SAGA instruments obtained during the NASA ATom campaign, and aerosol optical depth (AOD) measurements from AERONET Marine Aerosol Network (MAN) sun photometers and from MODIS satellite observations to better constrain sea salt in the marine atmosphere. ATom measurements and GEOS model simulation both show that sea salt concentrations over the Pacific and Atlantic oceans have a strong vertical gradient, varying up to four orders of magnitude from the marine boundary layer to free troposphere. The modeled residence times suggest that the lifetime of sea salt particles with dry diameter less than 3 μm is largely controlled by wet removal, followed next by turbulent process. During both boreal summer and winter, the GEOS simulated sea salt mass mixing ratios agree with SAGA measurements in the marine boundary layer (MBL) and with PALMS measurements above the MBL. However, comparison of AOD from GEOS with AERONET/MAN and MODIS aerosol retrievals indicated that the model underestimated AOD over the oceans where sea salt dominates. The apparent discrepancy of slightly overpredicted concentration and large underpredicted AOD could not be explained by biases in the model RH, which was found to be comparable to or larger than the in-situ measurements. This conundrum is at least partially explained by the sea salt size distribution; where the GEOS simulation has much less sea salt percentage-wise in the smaller particles than was observed by PALMS. Model sensitivity experiments indicated that the simulated sea salt is better correlated with measurements when the sea salt emission is calculated based on the friction velocity and with consideration of sea surface temperature dependence than that parameterized with the 10-m winds.


2010 ◽  
Vol 10 (1) ◽  
pp. 361-390
Author(s):  
R.-J. Huang ◽  
K. Seitz ◽  
J. Buxmann ◽  
D. Poehler ◽  
K. E. Hornsby ◽  
...  

Abstract. "Single-point" in situ measurements of molecular iodine (I2) were carried out in the coastal marine boundary layer (MBL) using diffusion denuders in combination with a gas chromatography-mass spectrometry (GC-MS) method. Comparison measurements were taken at Mace Head and Mweenish Bay, on the West Coast of Ireland. The observed mixing ratios of I2 at Mweenish Bay are much higher than that at Mace Head, indicating the emissions of I2 are correlated with the local algal biomass density and algae species. The concentration levels of I2 were found to correlate inversely with tidal height and correlate positively with the concentration levels of O3 in the surrounding air. However, the released I2 can also lead to O3 destruction via the reaction of O3 with iodine atoms that are formed by the photolysis of I2 during the day and via the reaction of I2 with NOx at night. IO and OIO were measured by long-path differential optical absorption spectroscopy (LP-DOAS). The results show that the concentrations of both daytime and nighttime IO are correlated with the mixing ratios of I2. OIO was observed not only during the day but also, for the first time at both Mace Head and Mweenish Bay, at night. In addition, I2 was measured simultaneously by the LP-DOAS technique and compared with the "single-point" in situ measurement. The results suggest that the local algae sources dominate the inorganic iodine chemistry at Mace Head and Mweenish Bay.


2011 ◽  
Vol 11 (1) ◽  
pp. 885-916 ◽  
Author(s):  
H. Wang ◽  
P. J. Rasch ◽  
G. Feingold

Abstract. We use a cloud-system-resolving model to study marine-cloud brightening. We examine how injected aerosol particles that act as cloud condensation nuclei (CCN) are transported within the marine boundary layer and how the additional particles in clouds impact cloud microphysical processes, and feedback on dynamics. Results show that the effectiveness of cloud brightening depends strongly on meteorological and background aerosol conditions. Cloud albedo enhancement is very effective in a weakly precipitating boundary layer and in CCN-limited conditions preceded by heavy and/or persistent precipitation. The additional CCN help sustain cloud water by weakening the precipitation substantially in the former case and preventing the boundary layer from collapse in the latter. For a given amount of injected CCN, the injection method (i.e., number and distribution of sprayers) is critical to the spatial distribution of these CCN. Both the areal coverage and the number concentration of injected particles are key players but neither one always emerges as more important than the other. The same amount of injected material is much less effective in either strongly precipitating clouds or polluted clouds, and it is ineffective in a relatively dry boundary layer that supports clouds of low liquid water path. In the polluted case and "dry" case, the CCN injection increases drop number concentration but lowers supersaturation and liquid water path. As a result, the cloud experiences very weak albedo enhancement, regardless of the injection method.


2011 ◽  
Vol 11 (22) ◽  
pp. 11511-11519 ◽  
Author(s):  
D. C. Thornton ◽  
A. R. Bandy ◽  
J. G. Hudson

Abstract. During the Rain in (shallow) Cumulus over the Ocean (RICO) project simultaneous high rate sulfur dioxide (SO2) measurements and cloud condensation nuclei (CCN) spectra were made for the first time. For research flight 14 (14 January 2005) the convective boundary layer was impacted by precipitation and ship plumes for much of the midday period but not in the late afternoon. Number densities of accumulation mode aerosols (0.14 to 0.2 μm diameter) were a factor of two greater in the later period while CCN were 35% to 80% greater for aerosols that activate at supersaturations >0.1%. Linear correlations of SO2 and CCN were found for SO2 concentrations ranging from 20 to 600 parts-per-trillion (pptv). The greatest sensitivities were for SO2 and CCN that activate at supersaturations >0.1% for both clean and polluted air. In a region unaffected by pollution SO2 was linearly correlated only with CCN at >0.2% supersaturation. These correlations imply that the smallest CCN may be activated by SO2 through heterogeneous conversion. Evidence for entrainment of CCN from the cloud layer into the CBL was found.


2016 ◽  
Vol 16 (4) ◽  
pp. 2675-2688 ◽  
Author(s):  
Thomas B. Kristensen ◽  
Thomas Müller ◽  
Konrad Kandler ◽  
Nathalie Benker ◽  
Markus Hartmann ◽  
...  

Abstract. Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June–July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.


Sign in / Sign up

Export Citation Format

Share Document