Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: Bisphenol A, alkylphenols, and norethindrone

2015 ◽  
Vol 35 (1) ◽  
pp. 182-190 ◽  
Author(s):  
Minghong Wu ◽  
Chenyuan Pan ◽  
Ming Yang ◽  
Bentuo Xu ◽  
Xiangjie Lei ◽  
...  
Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 922
Author(s):  
Dong Lee ◽  
Moo-Yeal Lee ◽  
Sukkil Koh ◽  
Mihi Yang

A micropillar/microwell chip platform with 3D cultured liver cells has been used for HTP screening of hepatotoxicity of bisphenol A (BPA), an endocrine-disrupting chemical. We previously found the hepatotoxicity of BPA is alleviated by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase 2 (ALDH2). In this study, we have tested potential BPA detoxification with Korean pear (Pyrus pyrifolia) extract, stimulators of ADH and ALDH, as well as arbutin, a reference compound in the pears, on the micropillar/microwell chip platform with human liver cells. Surprisingly, the toxicity of BPA was reduced in the presence of Korean pear extract, indicated by significantly increased IC50 values. The IC50 value of BPA with Korean pear extract tested against HepG2 cells was shifted from 151 to 451 μM, whereas those tested against Hep3B cells was shifted from 110 to 204 μM. Among the tested various concentrations, 1.25, 2.5, and 5 mg/mL of the extract significantly reduced BPA toxicity (Ps < 0.05). However, there was no such detoxification effects with arbutin. This result was supported by changes in protein levels of ADH in the liver cells.


2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Joëlle Le Moal ◽  
Richard Sharpe ◽  
Niels Jorgensen ◽  
Hagai Levin ◽  
Joanna Jurewicz ◽  
...  

2014 ◽  
Vol 451 (4) ◽  
pp. 592-598 ◽  
Author(s):  
Yanzhen Liu ◽  
Chenfang Mei ◽  
Hao Liu ◽  
Hongsheng Wang ◽  
Guoqu Zeng ◽  
...  

Author(s):  
Aylin Jamali Khaghani ◽  
Parisa Farrokh ◽  
Saeed Zavareh

Background: Bisphenol A (BPA), a synthetic endocrine-disrupting chemical, is a reproductive toxicant. Granulosa cells have significant roles in follicle development, and KIT ligand (KITL) and Anti-Müllerian hormone (AMH) are essential biomolecules produced by them during folliculogenesis. Objective: Due to the widespread use of BPA and its potential epigenetic effects, this study examined the impact of BPA on promoter methylation of amh and kitl genes in mouse granulosa cells. Materials and Methods: Preantral follicles were isolated from ovaries of immature mice and cultured for eight days. Then, follicles were treated with 50 and 100 μM of BPA, and 0.01% (v/v) ethanol for 24 and 72 hr. Growth and degeneration of follicles and antrum formation were analyzed. The granulosa cells were isolated mechanically, and their extracted DNA was treated with sodium bisulfite. The promoter regions of the amh and kitl were analyzed with PCR and sequencing. Results: BPA did not change follicle survival and antrum formation significantly (p = 0.41). However, the culture in the presence of 100 μM BPA had an inhibitory effect on growth. Before BPA treatment, the CpG of the kitl and amh promoters were unmethylated and partially methylated, respectively. While the percent of 5mC in the amh promoter reduced at 100 μM of BPA, it did not alter the kitl promoter methylation. Conclusion: BPA at higher concentrations has an inhibitory effect on follicle growth. Moreover, it seems that the epigenetic impact of BPA restricts to the demethylation of CpG sites. Key words: Bisphenol A, DNA methylation, Granulosa cells.


2021 ◽  
Vol 10 (24) ◽  
pp. 5945
Author(s):  
Ewelina Palak ◽  
Weronika Lebiedzińska ◽  
Sławomir Anisimowicz ◽  
Maria Sztachelska ◽  
Piotr Pierzyński ◽  
...  

Bisphenol A (BPA), the most common endocrine-disrupting chemical, has been associated with male reproductive dysfunctions. Recently, it has been shown that BPA may also affect miRNAs expression. Herein, we aimed to evaluate the association of BPA levels with steroid hormone concentration and circulating miRNAs levels to investigate the potential direct effect of BPA on homeostasis in the testis environment. The level of BPA in the seminal plasma of azoospermic men was significantly higher compared to the healthy control. The concentrations of estradiol (E2) and androstenedione (A) were significantly decreased in the seminal plasma of azoospermic men compared to the normospermic men. The levels of miR-let-7a, miR-let-7b, and miR-let-7c were significantly up-regulated, and the level of miR-518f was significantly down-regulated in the seminal plasma of the azoospermic men compared to the healthy control. The level of BPA correlated negatively with sperm concentration and normal semen morphology. A significant positive correlation was found between BPA levels and miR-let-7a and miR-let-7c levels, whereas BPA negatively correlated with miR-518f levels. Our results suggest that BPA may negatively affect sperm quality. Moreover, BPA correlated with the miR-let-7a, miR-let-7c, and miR-518f levels in seminal plasma, which suggests that BPA may act directly in seminal plasma, affecting the testicular environment.


Sign in / Sign up

Export Citation Format

Share Document