Green infrastructure for urban resilience: a trait‐based framework

Author(s):  
Heather L Reynolds ◽  
Sarah K Mincey ◽  
Robert D Montoya ◽  
Samantha Hamlin ◽  
Abigail Sullivan ◽  
...  
Author(s):  
João Carlos Castro Pena ◽  
Danilo Marques Magalhães ◽  
Ana Clara Mourão Moura ◽  
Robert John Young ◽  
Marcos Rodrigues

We mapped and described the composition of the urban vegetation that comprises the green infrastructure of a highly urbanized Neotropical city, and discussed how it can be used to preserve and maintain urban biodiversity. Almost half of our study area is occupied by 12 types of arboreal and herbaceous vegetation, composed mostly of urban parks, gardens and street trees. Forty-one percent of the almost 90,000 street trees are composed of 10 species with only 4 native species. These results show that this urban landscape is highly heterogeneous and has a great potential for biodiversity conservation. However, management strategies are needed, such as better planning of the urban forestry. This study is the first step towards a better understanding of how this landscape influences local biodiversity, and can be used as a management tool to increase urban resilience and functionality.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 414 ◽  
Author(s):  
Carolina Yacamán Ochoa ◽  
Daniel Ferrer Jiménez ◽  
Rafael Mata Olmo

Green infrastructure (GI), as a concept and as a tool for environmental land-use planning at various scales, has burst onto the academic, political, and policy-making scenes in the last two decades. This tool, associated with strategic planning, offers integrated solutions for improving the ecological connectivity and urban resilience of open spaces, especially those affected by processes of urban sprawl, the abandonment of agriculture, and the territorial fragmentation of habitats and traditional agricultural landscapes. In spite of the advantages of GI, its design and implementation face a range of challenges and limitations. In this context, this paper has two objectives: Firstly, to address a critical review of recent literature on the subject, which, among other things, highlights the lack of references to the role of peri-urban agriculture in GI planning, and the positive contribution made by peri-urban agriculture to the local food supply and other regulatory and cultural services. Secondly, to propose a methodology to contribute to integrating practical GI planning in metropolitan regions to maximize the activation of traditional agricultural landscapes and the improvement of landscape connectivity in metropolitan regions for the reconnection of rural-urban relationships.


Author(s):  
Yixin Zhang ◽  
Weihan Zhao ◽  
Xue Chen ◽  
Changhyun Jun ◽  
Jianli Hao ◽  
...  

Stormwater management is a key urban issue in the world, in line with the global issues of urban sprawl and climate change. It is urgent to investigate the effectiveness in managing stormwater with different strategies for maintain urban resilience. A method based on a storm water management model (SWMM) was developed for assessing the control of stormwater runoff volume and the percentage removal of suspended solids by implementing a Sponge City strategy. An interdisciplinary approach was adopted incorporating Low Impact Development (LID) with urban Green Infrastructure and Gray Infrastructure paradigms in a typical old residential community in Suzhou, China. Four types of sponge facilities for reducing stormwater runoff were bio-retention cells, permeable pavements, grassed pitches, and stormwater gardens. The simulation results indicate that the stormwater pipe system can meet the management standard for storms with a five-year recurrence interval. The volume capture ratio of annual runoff is 91% and the reduction rate of suspended solids is 56%. This study demonstrates that Sponge City strategy is an effective approach for managing stormwater, particularly in old and densely populated urban areas. Implementing spongy facilities with a LID strategy for stormwater management can significantly enhance urban water resilience and increase ecosystem services.


2019 ◽  
Author(s):  
Fahmyddin Araaf Tauhid

Climate change is affecting urban areas by increasing the intensity and frequency of climate-related disasters such as flooding, sea level rise, drought, etc. The trend is expected to rise significantly without proper intervention. Urban housings as the concentration of people and economic growth are the most impacted. This condition calls to study green infrastructure/GI strategies as a more sustainable way than the conventional. Such GI approach not only mitigate and adapt the impacts but also improve the urban climate resilience, particularly in the housing sector. Therefore, this study aims to propose a conceptual framework to integrate the elements for the implementation of GI for mitigating and adapting climate impact for urban resilience improvement. This study identified elements to employ GI for housing climate resilience: public awareness; land use and development regulation; land and property acquisition; environmental management plan; housing strategy; fiscal and taxation; and governance. This framework is a new tool for scoping and assessing urban housing vulnerability to climate change by helping stakeholders to systematically consider the benefit to introduce GI scheme in respective efforts.


2020 ◽  
Author(s):  
Bingqin Yu ◽  
Shengquan Che ◽  
Lu Wang

<p>Shanghai is one of the demonstration sites of Sponge City which is a typical coastal saline-alkali area. To improve the urban resilience and mitigate storm water, green infrastructure as raingarden, bioswale and green roof, etc. are used to regulate runoff. However, the design of raingarden have the disadvantage of solutions for high groundwater levels and soil salinization in Shanghai. In order to improve the regional adaptability and optimize the design of the raingarden, the indoor rainfall simulation experiments and orthogonal experiments were used to analyze the effect of salt isolation and rain infiltration impacted by different structures (salt-insulated layer material, salt-insulated layer position, filler layer thickness). The results show that the order of influence on salt isolation is: salt-insulated material>filler layer thickness>salt-insulated layer position. The order of impact on rain infiltration is: salt-insulated material>salt-insulated layer location>filler layer thickness. Three types of rain garden structures are proposed. The first is strong salt-insulated rain garden suitable for severe saline-alkali areas. The second is suitable for the comprehensive rain garden in the moderate saline-alkali area. The third is suitable for the permeable rain garden in the light saline-alkali area.</p>


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1438
Author(s):  
Mingkun Xie ◽  
Ruijun Wang ◽  
Jing Yang ◽  
Yuning Cheng

Urban green infrastructure (UGI) can be used as a sustainable stormwater management approach. UGI can bring numerous ecological benefits to cities, including increased urban resilience, increased availability of water resources, and optimization of habitats. This paper used empirical research methods to describe an Internet of things (IoT)-based UGI monitoring and control system for stormwater management (MCSSWM). Using a Xuzhou-based practical project in China as a case study, we introduce the construction process, method, and monitoring results of the system. The results showed that the MCSSWM could be beneficial for UGI ecological performance evaluation and management.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Yixin Zhang ◽  
Weihan Zhao ◽  
Xue Chen ◽  
Changhyun Jun ◽  
Jianli Hao ◽  
...  

Stormwater management is a key issue in line with global problems of urbanization and climate change. Assessing the effectiveness in managing stormwater is crucial to maintain urban resilience to flooding risk. A method based on a stormwater management model (SWMM) was developed for assessing the control of stormwater runoff volume and the percentage removal of suspended solids by implementing a Sponge City strategy. An interdisciplinary approach was adopted incorporating Low Impact Development (LID) with urban green infrastructure and grey infrastructure paradigms in a typical old residential community in Suzhou, China. Sponge facilities for reducing stormwater runoff included bio-retention cells, permeable pavements, grassed pitches, and stormwater gardens. The simulation results of SWMM show that the stormwater pipe system can meet the management standard for storms with a five-year recurrence interval. The volume capture ratio of annual runoff was 91%, which is higher than control target of 80%. The suspended solids reduction rate was 56%, which meets the requirement of planning indicators. Thus, the proposed method of spongy facilities can be used for renovation planning in old residential areas in China. Implementing spongy facilities with a LID strategy for stormwater management can significantly enhance urban water resilience and improve ecosystem services.


Sign in / Sign up

Export Citation Format

Share Document