scholarly journals Effect of ethanol fumigation on pericarp browning associated with phenol metabolism, storage quality, and antioxidant systems of wampee fruit during cold storage

2020 ◽  
Vol 8 (7) ◽  
pp. 3380-3388
Author(s):  
Yuanzhi Shao ◽  
Zitao Jiang ◽  
Jiaoke Zeng ◽  
Wen Li ◽  
Yu Dong
Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1175
Author(s):  
Giuseppina Caracciolo ◽  
Anna Magri ◽  
Milena Petriccione ◽  
Maria Luigia Maltoni ◽  
Gianluca Baruzzi

Superficial scald is the most common physiological disorder in apples and pears and causes huge economic losses worldwide. The aim of this study is to determine the different scald susceptibilities of seven pear cultivars/selections during five months of cold storage (CS). Four advanced pear selections and three commercial cultivars were harvested from an orchard located in Emilia-Romagna region, and cold stored at −1 °C and 85% relative humidity (RH).After 90, 120, and 150 days, fruits of each cultivar and selection were removed for ripening for 4 d, after which scald damage, physico-chemical and nutraceutical traits, and enzymatic antioxidant systems were evaluated on peel and pulp. ‘Abbé Fétel’, ‘Falstaff’, and ‘CREA 171’ did not showed superficial scald symptoms after 90 days, while ‘Doyenne du Comice’ and ‘CREA 264’ showed the highest susceptibility. After 90 days, CS ‘Falstaff’ and ‘CREA 179’ showed the highest total polyphenol content (TPH) in peel, followed by ‘Doyenne du Comice’ and ‘AbbéFétel’; lowest TPH was detected in ‘CREA 264’. After 120 and 150 days of CS, ‘Abbé Fétel’ and ‘CREA 171’ showed the highest peel TPH. ‘CREA 264’ and ‘CREA 125’ reached the lowest values of TPH during the three CS time periods. Superoxide dismutase and catalase activities were higher in the peel of scald-resistant than that in scald-susceptible pear cultivars/advanced selections. Superficial scald induced an increase in polyphenoloxidase, and guaiacol peroxidase activities involved in fruit-browning during CS. Furthermore, we observed an increase in lipoxygenase activity and consequent membrane damage in both the peel and flesh of the fruit. This study indicates that pear cultivars/advanced selections have different superficial scald susceptibilities that enable them to induce the activity of several antioxidant enzymes, following CS.


2020 ◽  
pp. 105-112
Author(s):  
T. Dilmaçünal ◽  
A.N. Yıldırım ◽  
B. Şan ◽  
F. Yıldırım ◽  
M.A. Koyuncu

2010 ◽  
Vol 48 (2) ◽  
pp. 225-229 ◽  
Author(s):  
Navjot Gupta ◽  
Sukhjit Kaur Jawandha ◽  
Parmpal Singh Gill
Keyword(s):  

HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Mustafa Özgen ◽  
Karim M. Farag ◽  
Senay Ozgen ◽  
Jiwan P. Palta

Highly colored cranberries are desired for both fresh and juice markets. Berries accumulate more color when allowed to stay on the vines longer. However, early fall frosts often force growers to harvest before the fruit has reached its optimal color. This is especially true for the berries under the canopy. No product is currently available for grower to accelerate the color development in cranberries. Result from recent studies suggests that a natural lipid, lysophosphatidylethanolamine (LPE), can accelerate color production in fruit and, at the same time, promote shelf life. LPE is a natural lipid and is commercially derived from egg and soy lecithin. The influence of LPE on anthocyanin accumulation and storage quality of cranberry fruit (Vaccinium macrocarpon Ait. `Stevens') was studied. Cranberry plants were sprayed with LPE at about 4 weeks before commercial harvest at multiple locations. Experiments were conducted in 1997, 1998 and 1999. Fruit samples were taken at 2 and 4 weeks after spray application to determine the changes in the fruit color. Plots were wet harvested using a standard commercial method and stored in a commercial cold storage facility. Marketable fruit were evaluated at 1 and 2 months after cold storage to determine effect of LPE on shelf life of cranberries. In general, a preharvest application of LPE resulted in a 9% to 27% increase in fruit anthocyanin concentration compared to the control. LPE treatments also resulted in 8% to 12% increase in marketable fruit compared to the control following cold storage. Influence of LPE on fruit quality was more apparent after 1 month of storage. These results are consistent with the observed effects of LPE on tomatoes. Interestingly ethanol application also enhanced storage quality. Our results suggest that a preharvest application of LPE may have the potential to enhance color and prolong shelf life of cranberry fruit.


HortScience ◽  
2018 ◽  
Vol 53 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Martha Edith López-López ◽  
José Ángel López-Valenzuela ◽  
Francisco Delgado-Vargas ◽  
Gabriela López-Angulo ◽  
Armando Carrillo-López ◽  
...  

‘Keitt’ mango is one of the most important cultivars, and it is usually stored at a low temperature during its commercialization to extend shelf life and reach distant markets. However, it is susceptible to chilling injury (CI) and some prestorage treatments are required to reduce the incidence of this disorder. This research shows for the first time the protective effect of a combination hot water-calcium lactate (Ca) against CI in mango fruit cv. Keitt. Fruit were subjected to hot water treatment (HWT) (46.1 °C, 75–90 minutes) or treated with 0.5% Ca or with the combination HWT + Ca, stored at 5 °C for 20 days, and ripened at 21 °C for 7 days. CI index (CII), electrolyte leakage (EL), malondialdehyde (MDA) production, bioactive compounds, antioxidant capacity [2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH)], and activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)] were analyzed in mango samples after 0, 10, and 20 days of cold storage and after ripening. Hot water treatments (HWT and HWT + Ca) were more effective than Ca in providing protection against CI as evidenced by lower incidence of symptoms and lower EL and MDA. HWT + Ca increased the content of phenolics, flavonoids, and carotenoids during the cold storage, which correlated with the antioxidant capacity by ABTS. SOD and APX showed higher activity in HWT + Ca–treated fruit, whereas CAT activity was higher in fruit with HWT and Ca. These results suggest that HWT + Ca provided CI tolerance of ‘Keitt’ mango by activation of the enzymatic and nonenzymatic antioxidant systems.


HortScience ◽  
2016 ◽  
Vol 51 (8) ◽  
pp. 1031-1037 ◽  
Author(s):  
Carolina A. Torres ◽  
Omar Hernandez ◽  
Maria A. Moya-León ◽  
Ivan Razmilic ◽  
David R. Rudell

A distinct type of postharvest skin browning on apple (Malus domestica Borkh.) fruit called “stain” is a frequent disorder in ‘Fuji’ grown under high light and elevated temperatures. Symptoms typically develop only on sun-exposed sections of the fruit regardless of the presence of sunburn symptoms, and sometimes only in the margins of this area. The role of different antioxidant systems in tissue exposed to different levels of sunlight and having different degrees of sun injury were investigated during cold storage [1 °C, >90% (relative humidity) RH]. Ascorbic acid (AsA) and glutathione (GSH) concentrations, AsA–GSH recycling enzyme activities and gene expression, and flavonoids and carotenoid concentrations were determined every 30 days. “Stain” incidence increased with sun exposure and sunburn level. Both shaded and exposed fruit peel without sunburn symptoms had the highest AsA content. The AsA–GSH recycling enzyme activities and gene expression levels had no clear relationship with sun exposure during cold storage. Chlorophyll a (chl a) and chlorophyll b (chl b) levels diminished over time and were higher in tissue without any type of sun injury. In contrast, carotenoid levels increased as sun injury incidence increased and remained relatively stable during storage. Total phenolics and quercetin glycoside levels changed coincidently during storage. Results indicate that the AsA–GSH cycle does not have a clear role in “stain” development. Nevertheless, reduced ascorbate levels may reduce the capacity to prevent oxidative stress–provoked damage which may, in turn, result in oxidation of quercetin glycosides, which would then lead to skin browning.


Sign in / Sign up

Export Citation Format

Share Document