scholarly journals Lysophosphatidylethanolamine Accelerates Color Development and Promotes Shelf Life of Cranberries

HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Mustafa Özgen ◽  
Karim M. Farag ◽  
Senay Ozgen ◽  
Jiwan P. Palta

Highly colored cranberries are desired for both fresh and juice markets. Berries accumulate more color when allowed to stay on the vines longer. However, early fall frosts often force growers to harvest before the fruit has reached its optimal color. This is especially true for the berries under the canopy. No product is currently available for grower to accelerate the color development in cranberries. Result from recent studies suggests that a natural lipid, lysophosphatidylethanolamine (LPE), can accelerate color production in fruit and, at the same time, promote shelf life. LPE is a natural lipid and is commercially derived from egg and soy lecithin. The influence of LPE on anthocyanin accumulation and storage quality of cranberry fruit (Vaccinium macrocarpon Ait. `Stevens') was studied. Cranberry plants were sprayed with LPE at about 4 weeks before commercial harvest at multiple locations. Experiments were conducted in 1997, 1998 and 1999. Fruit samples were taken at 2 and 4 weeks after spray application to determine the changes in the fruit color. Plots were wet harvested using a standard commercial method and stored in a commercial cold storage facility. Marketable fruit were evaluated at 1 and 2 months after cold storage to determine effect of LPE on shelf life of cranberries. In general, a preharvest application of LPE resulted in a 9% to 27% increase in fruit anthocyanin concentration compared to the control. LPE treatments also resulted in 8% to 12% increase in marketable fruit compared to the control following cold storage. Influence of LPE on fruit quality was more apparent after 1 month of storage. These results are consistent with the observed effects of LPE on tomatoes. Interestingly ethanol application also enhanced storage quality. Our results suggest that a preharvest application of LPE may have the potential to enhance color and prolong shelf life of cranberry fruit.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 538E-538
Author(s):  
Mustafa Ozgen ◽  
Senay Ozgen ◽  
Jiwan P. Palta

Recent studies from our laboratory have demonstrated that lysophoshatidylethanolamine (LPE) is able to accelerate fruit ripening while at the same time promoting shelf life. LPE is a natural lipid and is commercially extracted from egg yolks and soybeans. We studied the influence of LPE on the pattern of anthocyanin accumulation and storage quality of cranberry fruit (Vaccinium macrocarpon Ait. cultivar Stevens). For this purpose 2 x 2-m plots were established in cranberry beds at two separate locations near Wisconsin Rapids. Experiments were conducted in 1997 and 1998 seasons. Plots were sprayed with LPE (extracted from egg yolk and soybean) 3 to 4 weeks before harvest. Spray solution included 200 ppm LPE, 3% ethanol, and 0.1% detergents (either Tergitol or Sylguard). Fruit samples were taken from a part in the plot periodically to determine the changes in the fruit. The rest of the plots were commercially wet harvested with a machine and stored in cold storage. Marketable fruit were counted at various times of cold storage to determine effect of LPE on shelf life of cranberries. In general, application of LPE from both sources resulted in 20% to 35 % increase in fruit anthocyanin contents. Also LPE treatment resulted in 10% to 20% increase in marketable fruit in cold storage. A postharvest dip of cranberry fruit with 50 ppm LPE solution for 15 min also resulted in about a 20% to 30% increase in marketable berries during cold storage. The results of this study shows that pre- and postharvest applications of LPE can add value to cranberry crop including better and more uniform colored fruit, enhance self life, and earlier harvest.


2021 ◽  
Vol 13 (19) ◽  
pp. 10737
Author(s):  
Seok-Kyu Jung ◽  
Hyun-Sug Choi

This study was carried out to assess the morphological characteristics, fruit quality, and antioxidant levels in sucrose ester-coated ‘Harmony’ plumcots (Prunus salicina Lindl. × P. armeniaca L.). Fruit samples in the control group were left untreated, with two further groups undergoing coating either after 0 days of cold storage (0 d CS) or after 7 days of cold storage (7 d CS) to evaluate changes in post-harvest quality at three-day intervals throughout 12 days of room temperature storage (12 DAS). Coating treatment significantly reduced fruit respiration during storage time in the 0 d CS samples, with this being attributed to the clogging of pores in peel stomata and lenticel, as observed on the fruits under scanning electron microscopy; however, the same effect was not observed in the 7 d CS samples from fruits with a high initial CO2 concentration. The coating delayed fruit softening and discoloration during storage in the 0 d CS samples, extending the shelf-life of the fruits for approximately 9 days. However, the coating treatment was found to reduce total flavonoid and anthocyanin content at 6 DAS and 12 DAS in both groups.


2020 ◽  
pp. 105-112
Author(s):  
T. Dilmaçünal ◽  
A.N. Yıldırım ◽  
B. Şan ◽  
F. Yıldırım ◽  
M.A. Koyuncu

2011 ◽  
Vol 91 (5) ◽  
pp. 853-858 ◽  
Author(s):  
Jennifer DeEll ◽  
Behrouz Ehsani-Moghaddam

DeEll, J. R. and Ehsani-Moghaddam, B. 2011. Timing of postharvest 1-methylcyclopropene treatment affects Bartlett pear quality after storage. Can. J. Plant Sci. 91: 853–858. This study investigated the effects of postharvest 1-methylcyclopropene (1-MCP) treatment timing on the ripening and physiological disorders of Bartlett pears during cold storage and subsequent shelf-life. Pears were held for 1, 3 or 7 d at 3°C after harvest and then treated with 0.3 µL L−1 1-MCP for 24 h at 3°C. Fruit quality attributes were evaluated after 4 mo of cold storage at 0.5°C, plus 1 to 11 d at 22°C. All 1-MCP treatments reduced ethylene production, as well as delayed fruit softening and yellow color development. However, the most substantial benefit of 1-MCP observed was the marked reduction in disorders, especially senescent scald and internal breakdown. The results suggest that 1-MCP treatment 3 d after harvest provided the best balance of reduced disorder development during storage and the ability of Bartlett pears to soften adequately thereafter. Fruit treated with 1-MCP at 1 d after harvest did not soften as much as those treated 3 or 7 d after harvest, while treatment after 7 d provided less control of disorders than treatment after 1 or 3 d.


HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 328-331 ◽  
Author(s):  
Zhenyong Wang ◽  
David R. Dilley

AVG, as ReTain™, an inhibitor of ethylene biosynthesis, was used alone or with a subsequent application of ethephon (Ethrel™), an ethylene-releasing chemical, to determine if red color development could be enhanced without over-ripening `Gala' and `Jonagold' apples. Treatments included: 1) AVG alone; 2) AVG followed by ethephon; 3) ethephon alone; and 4) control. Silwet L-77 surfactant was included in all treatments. Application of AVG delayed the onset of the ethylene climacteric and red color development of both cultivars. Application of AVG followed by ethephon similarly delayed the onset of the ethylene climacteric, but red color development at the commercial harvest date was only marginally reduced or not affected. The results were similar in both 1998 and 1999, although environmental stress during the growing seasons differed (1998—heat; 1999—moderate temperatures). The delay of fruit maturation and ripening observed at harvest following AVG +/- ethephon treatments improved storability of fruit in controlled atmosphere (CA) storage, as demonstrated by low internal ethylene levels after storage, and high retention of flesh firmness and shelf-life, while control fruit and those treated only with ethephon entered the ethylene climacteric during storage, and flesh firmness subsequently declined during shelf-life evaluation. Chemical name used: aminoethoxyvinylglycine (AVG).


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 781A-781
Author(s):  
Suparna Whale* ◽  
Zora Singh ◽  
John Janes

The effects of preharvest application of AVG and ethephon alone, or in combinations, on color development, fruit quality and shelf life were tested in `Pink Lady' apples (Malus domestica Borkh.) in Western Australia during 2002.The experiment aimed at improving color without adversely affecting fruit quality at harvest and after long term cold storage. Treatments included 124.5 g·ha-1 AVG only [148 Days after full bloom (DAFB)]; 280 g·ha-1 ethephon only (148 DAFB); AVG (148 DAFB) followed by ethephon (166 DAFB); and control. Fruit were evaluated for color development, internal ethylene concentration (IEC) and quality at commercial harvest(181DAFB) and 45, 90, and135 days after cold storage (1 °C ± 0.5 °C). At harvest, ethephon with or without AVG significantly (P ≤ 0.05) improved red blush and total anthocyanin in fruit skin. AVG+ethephon treated-fruit had higher total anthocyanin and TSS compared to AVG alone and control fruit. There were no significant differences among different AVG and ethephon treatments for fruit firmness and IEC. During different storage periods, fruit treated with AVG alone and AVG+ethephon had significantly lower IEC compared to fruit treated with ethephon only and the control, however the interactions between treatments and storage periods were not significant for fruit firmness. AVG + ethephon and ethephon alone did not significantly affect fruit color during different storage periods, which showed that the subsequent ethephon spray on AVG-treated fruit had overcome the inhibitory effect of AVG. Our experimental results showed that application of AVG followed by ethephon improved color in `Pink Lady' apples without compromising fruit quality including firmness during extended cold storage.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 407D-407
Author(s):  
G.A. González-Aguilar ◽  
J.G. Buta ◽  
C.Y. Wang

Treatment of mango (Mangifera indica cv Kent) with methyl jasmonate (MJ) vapor for 20 h at 20 °C was effective in reducing chilling injury (CI) symptoms and decay, and enhancing skin color development. MJ (10-4 M) was the most effective concentration for reducing CI and decay in fruit stored at 5 °C followed by 7 days at 20 °C (shelf life period). The use of 10-5 M MJ enhanced yellow and red color development of mango kept at 20 °C. These fruit possessed higher L*, a* and b* values than controls and those treated with 10-4 M MJ. Ripening processes were inhibited by cold storage in control fruits. After cold storage (5 °C) and the shelf life period, fruit treated with 10-5 M MJ fruit ripened normally and contained the highest total soluble solids (TSS). These fruit maintained higher sugar and organic acid levels than those in other treatments. We concluded that MJ treatment could be used to reduce decay and CI symptoms, and also to improve color development of mango fruit without adversely affecting quality.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 507E-508
Author(s):  
Zhenyong Wang ◽  
David R. Dilley

Multiple harvests are often necessary to achieve maximum yield of well-colored high-quality apples. This is true for most cultivars, and particularly for `Gala'. Multiple harvests add significantly to the cost of producing apples. We tested our hypotheses that anthocyanin production of ReTain™-treated apples may be enhanced by ethephon without overly stimulating other ripening processes and ReTain™ may promote uniform maturation of apples within and between trees by delaying maturation and ripening processes. Experiments were conducted with `Gala', `Empire', and `Jonagold' apples at the MSU CHES in 1997 and 1998 employing the rootstock/training systems research plot. Treatments were 1) ReTain™ (50g/ac.) applied 3 to 4 weeks before harvest, 2) ReTain™ followed by ethephon (3/4 pt/ac.) applied 1 to 2 weeks before harvest, 3) ethephon, and 4) control (Silwet® L-77 surfactant only). ReTain™ applied alone delayed the onset of the ethylene climacteric and red color development of `Gala' apples. ReTain™ followed by ethephon delayed the onset of the ethylene climacteric and red color development at the commercial harvest date was not significantly affected. Similar results were obtained with the `Empire' and `Jonagold'. Results with ReTain™ and ReTain™ + ethephon in 1998 on `Gala', `Empire', and `Jonagold' apples were more profound than in 1997; we attribute this to less environmental stress on the trees, which were well-irrigated in 1998. The ripening-related effects of treatments were reflected in the storability of fruit 1997 in air and particularly during CA storage where the action of ethylene in ripening can be attenuated. ReTain™ - and ReTain™ + ethephon-treated fruit were still at preclimacteric ethylene levels after 6 months in CA with excellent retention of flesh firmness and shelf-life, while ethephon and control fruit had higher ethylene levels and softened more during storage and shelf-life evaluation.


2019 ◽  
Vol 8 (1) ◽  
pp. 138
Author(s):  
Chyntia Wulandari Eka Saputri ◽  
I. A. Rina Pratiwi Pudja ◽  
Pande Ketut Diah Kencana

Tujuan dari penelitian ini adalah untuk menentukan waktu perlakuan optimal dan suhu penyimpanan dingin untuk mutu kubis bunga. Penelitian ini menggunakan rancangan acak lengkap (RAL) yang terdiri dari dua faktor, faktor pertama adalah suhu yang digunakan dan faktor kedua adalah waktu selama show case. Faktor pertama terdiri dari dua level, yaitu (P1): show case temperature 8oC, dan (P2): show case temperature 15oC dan tambah kontrol (P0). Faktor kedua terdiri dari empat level, yaitu (A0): penyimpanan selama 0 jam, (A1): penyimpanan selama 12 jam, (A2): penyimpanan selama 16 jam, (A3): penyimpanan selama 20 jam dan diulang untuk 3 kali ulangan. Kubis bunga sebagai kontrol disimpan pada suhu kamar (28 ± 1 ?). Parameter kualitas yang diamati dalam penelitian ini termasuk penurunan berat badan, tingkat konsumsi O2, warna (warna berbeda), uji organoleptik termasuk umur simpan dan tingkat kerusakan. Hasil penelitian menunjukkan parameter penurunan susut bobot, laju konsumsi O2, warna, umur simpan, tingkat kerusakan pada suhu perlakuan suhu terbaik adalah suhu 8 ? dan waktu penyimpanan 20 jam (P1A3).Kata kunci: kembang kol, waktu penyimpanan, suhu penyimpanan dingin   The purpose of this study was to determine the optimal treatment time and cold storage temperature for the quality of cabbage flowers. This study uses a completely randomized design (CRD) consisting of two factors, the first factor is the temperature used and the second factor is the time during the showcase. The first factor consists of two levels, namely (P1): showcase temperature of 8oC, and (P2): showcase temperature of 15oC and added a control (P0). The second factor consists of four levels, namely (A0): storage for 0 hours, (A1): storage for 12 hours, (A2): storage for 16 hours, (A3): storage for 20 hours and repeated for 3 replications. Flower cabbage as control was stored at room temperature (28 ± 1 ?). The quality parameters observed in this study included weight loss, O2 consumption rate, color (color different), organoleptic tests including shelf life and damage level. The results showed the parameters of weight loss, O2 consumption rate, color, shelf life, damage rate at the best temperature of 8 ? and storage time of 20 hours (P1A3). Keywords: cauliflower, storage time, cold storage temperature


Sign in / Sign up

Export Citation Format

Share Document