Inside Front Cover: Uncertainty and sensitivity analysis of relative permeability curves for the numerical simulation of CO 2 core flooding (Greenhouse Gas Sci Technol 3/2020)

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Zhanpeng Zheng ◽  
Qingsong Ma ◽  
Pei Hu ◽  
Yongchen Song ◽  
Dayong Wang
SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1929-1943 ◽  
Author(s):  
Yongge Liu ◽  
Jian Hou ◽  
Lingling Liu ◽  
Kang Zhou ◽  
Yanhui Zhang ◽  
...  

Summary Reliable relative permeability curves of polymer flooding are of great importance to the history matching, production prediction, and design of the injection and production plan. Currently, the relative permeability curves of polymer flooding are obtained mainly by the steady-state, nonsteady-state, and pore-network methods. However, the steady-state method is extremely time-consuming and sometimes produces huge errors, while the nonsteady-state method suffers from its excessive assumptions and is incapable of capturing the effects of diffusion and adsorption. As for the pore-network method, its scale is very small, which leads to great size differences with the real core sample or the field. In this paper, an inversion method of relative permeability curves in polymer flooding is proposed by combining the polymer-flooding numerical-simulation model and the Levenberg-Marquardt (LM) algorithm. Because the polymer-flooding numerical-simulation model by far offers the most-complete characterization of the flowing mechanisms of polymer, the proposed method is able to capture the effects of polymer viscosity, residual resistance, diffusion, and adsorption on the relative permeability. The inversion method was then validated and applied to calculate the relative permeability curve from the experimental data of polymer flooding. Finally, the effects of the influencing factors on the inversion error were analyzed, through which the inversion-error-prediction model of the relative permeability curve was built by means of multivariable nonlinear regression. The results show that the water relative permeability in polymer flooding is still far less than that in waterflooding, although the residual resistance of the polymer has been considered in the numerical-simulation model. Moreover, the accuracy of the polymer parameters has great effect on that of the inversed relative permeability curve, and errors do occur in the inversed water relative permeability curve—the measurements of the polymer solution viscosity, residual resistance factor, inaccessible pore-volume (PV) fraction, or maximum adsorption concentration have errors.


2015 ◽  
Vol 8 (1) ◽  
pp. 181-185
Author(s):  
Yang Manping ◽  
Xi Wancheng ◽  
Zhao Xiaojing ◽  
Cheng Yanhong

Oil-water relative permeability curves are the characteristic curves of evaluating the oil-water infiltrating fluid and also are an important part of reservoir engineering studies. Through a large number of core flooding experiments, based on the establishment of oil-water relative permeability calculation models, the use of the function of the relative permeability curves divided these into the water phase concave, water phase convex and a water phase linear categories. The relationship between different types of relative permeability curves with reservoir characteristics, moisture content, common infiltration points, common permeation range and oil displacement efficiency have been evaluated. Analysis the distribution of the reservoir usable remaining oil and reservoir irreducible oil of different types of relative permeability curves.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5125
Author(s):  
Qiong Wang ◽  
Xiuwei Liu ◽  
Lixin Meng ◽  
Ruizhong Jiang ◽  
Haijun Fan

It is well acknowledged that due to the polymer component, the oil–water relative permeability curve in polymer flooding is different from the curve in waterflooding. As the viscoelastic properties and the trapping number are presented for modifying the oil–water relative permeability curve, the integration of these two factors for the convenience of simulation processes has become a key issue. In this paper, an interpolation factor Ω that depends on the normalized polymer concentration is firstly proposed for simplification. Then, the numerical calculations in the self-developed simulator are performed to discuss the effects of the interpolation factor on the well performances and the applications in field history matching. The results indicate that compared with the results of the commercial simulator, the simulation with the interpolation factor Ω could more accurately describe the effect of the injected polymer solution in controlling water production, and more efficiently simplify the combination of factors on relative permeability curves in polymer flooding. Additionally, for polymer flooding history matching, the interpolation factor Ω is set as an adjustment parameter based on core flooding results to dynamically consider the change of the relative permeability curves, and has been successfully applied in the water cut matching of the two wells in Y oilfield. This investigation provides an efficient method to evaluate the seepage behavior variation of polymer flooding.


1970 ◽  
Vol 10 (04) ◽  
pp. 381-392 ◽  
Author(s):  
John D. Huppler

Abstract Numerical simulation techniques were used to investigate the effects of common core heterogeneities upon apparent waterflood relative-permeability results. Effects of parallel and series stratification, distributed high and low permeability lenses, and vugs were considered. permeability lenses, and vugs were considered. Well distributed heterogeneities have little effect on waterflood results, but as the heterogeneities become channel-like, their influence on flooding behavior becomes pronounced. Waterflooding tests at different injection rates are suggested as the best means of assessing whether heterogeneities are important. Techniques for testing stratified or lensed cores are recommended. Introduction Since best results from waterflood tests performed on core plugs are obtained with homogeneous cores, plugs selected for testing are chosen for their plugs selected for testing are chosen for their apparent uniformity. We know, however, that uniform appearance can be misleading. For example, flushing concentrated hydrochloric acid through an apparently homogeneous core plug often produces "wormholes" in higher permeability regions. Also, we sometimes find that all core plugs from a region of interest have obvious heterogeneities, so any flooding tests must be run on nonhomogeneous core plugs. plugs. Nevertheless, relative permeabilities, as obtained routinely from core waterflood data, are calculated using the assumption that the core is a homogeneous porous medium. While it is obvious that porous medium. While it is obvious that heterogeneties mill affect these apparent relative permeabilities, there appear to be no experimental permeabilities, there appear to be no experimental results reported in the literature to indicate just how serious the problem is. Accordingly, a computer simulation study of core waterfloods was conducted to systematically examine the effects of different sizes and types of core heterogeneities on flood results. The study was performed by numerical simulation using two-dimensional, two-phase difference equation approximations to describe the immiscible water-oil displacement. For each simulation the permeability and porosity distribution of the heterogeneous core to be studied was specified; fluid flow characteristics of the system, including a single set of input relative-permeabilities curves, were stipulated The system was set in capillary pressure equilibrium at the reducible water saturation. Then a waterflood simulation was performed. From the resulting fluid production and pressure-drop data a set of production and pressure-drop data a set of relative-permeability curves was calculated using the standard computational procedure applicable to homogeneous cores. In this paper these calculated relative-permeability curves are denoted as "waterflood" curves to distinguish them from the specified input curves. The waterflood relative-permeability curves should closely match the input curves for homogeneous systems. Since the same set of input relative-permeability curves was used for all rock sections, deviations of the waterflood from the input relative-permeability curves gave an indication of the effects of heterogeneities. When the system was heterogeneous and there was good agreement between waterflood and input relative-permeability curves, then the heterogeneities did not strongly influence the flow behavior and the system responded homogeneously. MATHEMATICAL MODEL AND METHOD The waterflood simulations were carried out using two-dimensional, two-phase difference equation approximations to the incompressible-flow differential equations:* .....................(1) ....................(2) SPEJ P. 381


2021 ◽  
pp. 014459872110408
Author(s):  
Zhiwei Zhai ◽  
Kunchao Li ◽  
Xing Bao ◽  
Jing Tong ◽  
Hongmei Yang ◽  
...  

It is crucial to obtain the representative relative permeability curves for related numerical simulation and oilfield development. The influence of temperature on the relative permeability curve remains unclear. An unsteady method was adopted to investigate the influence of temperature (range from 25–130 °C) on the oil–water relative permeability curve of sandstone reservoirs in different blocks. Then, the experimental data was analyzed by using an improved Johnson–Bossler–Naumann method. Results reveal that with the increase in temperature within a certain temperature range: (1) the relative permeability of the oil and water phases increases; (2) the irreducible water saturation increases linearly, whereas the residual oil saturation decreases nonlinearly, and the oil recovery factor increases; and (3) the saturation of two equal permeability points moves to the right, and hydrophilicity becomes stronger. The findings will aid future numerical simulation studies, thus leading to the improvement of oil displacement efficiency.


Sign in / Sign up

Export Citation Format

Share Document