Experimental studies on influence of temperature on relative permeability curves in sandstone reservoirs

2021 ◽  
pp. 014459872110408
Author(s):  
Zhiwei Zhai ◽  
Kunchao Li ◽  
Xing Bao ◽  
Jing Tong ◽  
Hongmei Yang ◽  
...  

It is crucial to obtain the representative relative permeability curves for related numerical simulation and oilfield development. The influence of temperature on the relative permeability curve remains unclear. An unsteady method was adopted to investigate the influence of temperature (range from 25–130 °C) on the oil–water relative permeability curve of sandstone reservoirs in different blocks. Then, the experimental data was analyzed by using an improved Johnson–Bossler–Naumann method. Results reveal that with the increase in temperature within a certain temperature range: (1) the relative permeability of the oil and water phases increases; (2) the irreducible water saturation increases linearly, whereas the residual oil saturation decreases nonlinearly, and the oil recovery factor increases; and (3) the saturation of two equal permeability points moves to the right, and hydrophilicity becomes stronger. The findings will aid future numerical simulation studies, thus leading to the improvement of oil displacement efficiency.

SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1929-1943 ◽  
Author(s):  
Yongge Liu ◽  
Jian Hou ◽  
Lingling Liu ◽  
Kang Zhou ◽  
Yanhui Zhang ◽  
...  

Summary Reliable relative permeability curves of polymer flooding are of great importance to the history matching, production prediction, and design of the injection and production plan. Currently, the relative permeability curves of polymer flooding are obtained mainly by the steady-state, nonsteady-state, and pore-network methods. However, the steady-state method is extremely time-consuming and sometimes produces huge errors, while the nonsteady-state method suffers from its excessive assumptions and is incapable of capturing the effects of diffusion and adsorption. As for the pore-network method, its scale is very small, which leads to great size differences with the real core sample or the field. In this paper, an inversion method of relative permeability curves in polymer flooding is proposed by combining the polymer-flooding numerical-simulation model and the Levenberg-Marquardt (LM) algorithm. Because the polymer-flooding numerical-simulation model by far offers the most-complete characterization of the flowing mechanisms of polymer, the proposed method is able to capture the effects of polymer viscosity, residual resistance, diffusion, and adsorption on the relative permeability. The inversion method was then validated and applied to calculate the relative permeability curve from the experimental data of polymer flooding. Finally, the effects of the influencing factors on the inversion error were analyzed, through which the inversion-error-prediction model of the relative permeability curve was built by means of multivariable nonlinear regression. The results show that the water relative permeability in polymer flooding is still far less than that in waterflooding, although the residual resistance of the polymer has been considered in the numerical-simulation model. Moreover, the accuracy of the polymer parameters has great effect on that of the inversed relative permeability curve, and errors do occur in the inversed water relative permeability curve—the measurements of the polymer solution viscosity, residual resistance factor, inaccessible pore-volume (PV) fraction, or maximum adsorption concentration have errors.


1997 ◽  
Vol 506 ◽  
Author(s):  
W. J. Cho ◽  
J. O. Lee ◽  
K. S. Chun

ABSTRACTThe hydraulic conductivities in water saturated bentonites at different densities were measured within temperature range of 20 to 80 °C. The results show that the hydraulic conductivities increase with increasing temperature. The hydraulic conductivities of bentonites at the temperature of 80 °C increase up to about 3 times as high as those at 20 °C. The measured values are in good agreement with those predicted. The change in viscosity of water with temperature contributes greatly to increase of hydraulic conductivity.


2019 ◽  
Vol 89 ◽  
pp. 01004
Author(s):  
Dylan Shaw ◽  
Peyman Mostaghimi ◽  
Furqan Hussain ◽  
Ryan T. Armstrong

Due to the poroelasticity of coal, both porosity and permeability change over the life of the field as pore pressure decreases and effective stress increases. The relative permeability also changes as the effective stress regime shifts from one state to another. This paper examines coal relative permeability trends for changes in effective stress. The unsteady-state technique was used to determine experimental relativepermeability curves, which were then corrected for capillary-end effect through history matching. A modified Brooks-Corey correlation was sufficient for generating relative permeability curves and was successfully used to history match the laboratory data. Analysis of the corrected curves indicate that as effective stress increases, gas relative permeability increases, irreducible water saturation increases and the relative permeability cross-point shifts to the right.


2008 ◽  
Vol 607 ◽  
pp. 213-217 ◽  
Author(s):  
Sergey V. Stepanov ◽  
Gilles Duplâtre ◽  
Vsevolod Byakov ◽  
V.S. Subrahmanyam ◽  
Dmitry Zvezhinskiy ◽  
...  

Positron annihilation lifetime (PAL) spectra are measured in liquid water in the temperature range 2 – 930C. The spectra are treated by taking into account intratrack reactions and assuming that radical reactions with Ps are diffusion-controlled (the respective temperature dependences obeying the Stokes-Einstein law). Equilibrium Ps bubble parameters are obtained.


2013 ◽  
Vol 795 ◽  
pp. 419-423 ◽  
Author(s):  
J.H. Lim ◽  
C.K. Yeoh ◽  
Pei Leng Teh ◽  
W.M. Arif ◽  
A. Chik

In this paper, different sintering temperature used to study the influence of temperature on the structural and thermal properties of zinc oxide (ZnO). On this research, the sample was prepared by solid-state method for zinc oxide (ZnO) at different sintering temperature which was 700°C, 800°C and 900°C. It was observed that the density of bulk ZnO that sintering at 900°C had the higher value of density 5.03 g/cm3. The microhardness of the bulk ZnO had a higher measurement 397.3 Hv after sintered at 900°C. ZnO that sintering at 900°C had been observed that had thermal conductivity 1.1611W/cm-K in the sintering temperature range 700°C to 900°C.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1676-1683 ◽  
Author(s):  
Bin Li ◽  
Wan Fen Pu ◽  
Ke Xing Li ◽  
Hu Jia ◽  
Ke Yu Wang ◽  
...  

To improve the understanding of the influence of effective permeability, reservoir temperature and oil-water viscosity on relative permeability and oil recovery factor, core displacement experiments had been performed under several experimental conditions. Core samples used in every test were natural cores that came from Halfaya oilfield while formation fluids were simulated oil and water prepared based on analyze data of actual oil and productive water. Results from the experiments indicated that the shape of relative permeability curves, irreducible water saturation, residual oil saturation, width of two-phase region and position of isotonic point were all affected by these factors. Besides, oil recovery and water cut were also related closely to permeability, temperature and viscosity ratio.


2019 ◽  
Vol 108 ◽  
pp. 128-134
Author(s):  
PIOTR BORYSIUK ◽  
ANNA TETELEWSKA ◽  
AURIGA RADOSŁAW ◽  
IZABELLA JENCZYK-TOŁŁOCZKO

The influence of temperature on selected strength properties of furniture particleboard. As a part of the study, the influence of temperature on selected properties of furniture particleboard was tested. P2 type industrial particleboards in three finishing options: raw boards (1), boards covered with melamine film in white (2) and black (3) (10 samples per variant) have been subjected to temperatures from -20oC to +120oC, at 10oC intervals. The Time of exposure for individual temperatures was 7 days. MOR, MOE and IB were determined for tested boards. It has been shown that temperatures above 50oC have a negative effect on strength properties of boards. A large decrease in all tested parameters was observed in the temperature range from +60oC to +120oC. It was also noted that finishing boards with melamine film did not improve their durability.


Sign in / Sign up

Export Citation Format

Share Document