scholarly journals Lateralization of brain activity pattern during unilateral movement in Parkinson's disease

2015 ◽  
Vol 36 (5) ◽  
pp. 1878-1891 ◽  
Author(s):  
Tao Wu ◽  
Yanan Hou ◽  
Mark Hallett ◽  
Jiarong Zhang ◽  
Piu Chan
2020 ◽  
Vol 132 (4) ◽  
pp. 1234-1242 ◽  
Author(s):  
Paolo Belardinelli ◽  
Ramin Azodi-Avval ◽  
Erick Ortiz ◽  
Georgios Naros ◽  
Florian Grimm ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson’s disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21–35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4–6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.


2021 ◽  
Author(s):  
Feng Han ◽  
Gregory L. Brown ◽  
Yalin Zhu ◽  
Aaron E. Belkin‐Rosen ◽  
Mechelle M. Lewis ◽  
...  

2015 ◽  
Vol 9 ◽  
pp. 300-309 ◽  
Author(s):  
Erik S. te Woerd ◽  
Robert Oostenveld ◽  
Bastiaan R. Bloem ◽  
Floris P. de Lange ◽  
Peter Praamstra

2018 ◽  
Vol 14 (1) ◽  
pp. 142-154 ◽  
Author(s):  
Laura Bonzano ◽  
Ludovico Pedullà ◽  
Matteo Pardini ◽  
Andrea Tacchino ◽  
Paola Zaratin ◽  
...  

Neuroscience ◽  
2020 ◽  
Vol 436 ◽  
pp. 170-183 ◽  
Author(s):  
Zhi-yao Tian ◽  
Long Qian ◽  
Lei Fang ◽  
Xue-hua Peng ◽  
Xiao-hu Zhu ◽  
...  

2019 ◽  
Vol 365 ◽  
pp. 170-177 ◽  
Author(s):  
Candela Zorzo ◽  
Magdalena Méndez-López ◽  
Marta Méndez ◽  
Jorge L. Arias

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Karsten Mueller ◽  
Dušan Urgošík ◽  
Tommaso Ballarini ◽  
Štefan Holiga ◽  
Harald E Möller ◽  
...  

Abstract Levodopa is the first-line treatment for Parkinson’s disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson’s disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.


Sign in / Sign up

Export Citation Format

Share Document