scholarly journals Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice

Hepatology ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 1562-1573 ◽  
Author(s):  
Hiromitsu Hayashi ◽  
Keiko Sakai ◽  
Hideo Baba ◽  
Takao Sakai
1999 ◽  
Vol 112 (9) ◽  
pp. 1405-1416
Author(s):  
D. Claisse ◽  
I. Martiny ◽  
B. Chaqour ◽  
Y. Wegrowski ◽  
E. Petitfrere ◽  
...  

Transforming growth factor beta1 (TGF-beta1) is a secreted polypeptide that is thought to play a major role in the regulation of folliculogenesis and differentiation of thyroid cells. On porcine thyroid follicular cells cultured on plastic substratum, TGF-beta1, in a concentration-dependent way, promoted the disruption of follicles, cell spreading, migration and confluency by a mechanism that did not involve cell proliferation. TGF-beta1 strongly activated the production of thrombospondin-1 and (alpha)vbeta3 integrin in a concentration-dependent manner whereas the expression of thyroglobulin was unaffected. Anisomycin, an inhibitor of protein synthesis, inhibited the effect of TGF-beta1 on cell organization. Thrombospondin-1 reproduced the effect of TGF-beta1. In the presence of thrombospondin-1 cells did not organize in follicle-like structures but, in contrast, spreaded and reached confluency independently of cell proliferation. This effect is suppressed by an RGD-containing peptide. The adhesive properties of thrombospondin-1 for thyroid cells were shown to be mediated by both the amino-terminal heparin-binding domain and the RGD domain of thrombospondin-1. Adhesion was shown to involve (alpha)vbeta3 integrin. The results show that TGF-beta1 exerted an influence upon function and behaviour of follicle cells partly mediated by the synthesis of thrombospondin-1 and of its receptor (alpha)vbeta3 integrin.


2021 ◽  
Vol 108 (Supplement_4) ◽  
Author(s):  
A Balaphas ◽  
J Meyer ◽  
R Perozzo ◽  
M Zeisser Labouebe ◽  
S Berndt ◽  
...  

Abstract Objective To investigate the mechanisms driving the interaction of platelets with liver sinusoidal endothelial cells (LSEC) during liver regeneration. Methods Platelets were tracked in vivo in mice by intravital confocal microscopy after partial hepatectomy. In vitro, we isolated highly pure mouse LSEC and analyzed their interactions with platelets, hepatic stellate cells (HSC), Kupffer cells and hepatocytes. Results Recruited platelets adhered to LSEC in vivo within the remnant liver segments following partial hepatectomy and were necessary for the interleukin 6 (IL-6) burst that occurred afterwards. In vitro, platelets were activated after incubation with LSEC and released transforming growth factor β1 (TGF-β1), which stimulated LSEC to secrete IL-6 (fold increase of 9.8±0.73 relative to baseline). Antibody-mediated neutralization of TGF-B1 or its downstream SMAD signalling pathway prevented the effects of activated platelets on LSEC. We also demonstrated that IL-6 released by LSEC stimulates HSC to produce hepatocyte growth factor (HGF) a main mitogen for hepatocytes. Conclusion Our results suggest that after hepatectomy, platelets initiate liver regeneration by interacting with LSEC and stimulate IL-6 release, which in turn stimulates HSC to produce HGF.


2010 ◽  
Vol 84 (2) ◽  
pp. 221-225 ◽  
Author(s):  
Xiao-Ming Zhang ◽  
Pei-Hua Shi ◽  
Sai-Hong Cao ◽  
He-Jun Yu ◽  
Junaid Azad ◽  
...  

2006 ◽  
Vol 53 (2) ◽  
pp. 383-393 ◽  
Author(s):  
Natalia Yu Yevdokimova

The dysregulation of the metabolism of glycosaminoglycan and protein components of extracellular matrix (ECM) is a typical feature of diabetic complications. High glucose-induced enrichment of ECM with hyaluronan (HA) not only affects tissue structural integrity, but influences cell metabolic response due to the variety of effects depending on the HA polymer molecular weight. TSP-1-dependent activation of TGFbeta1 axis is known to mediate numerous matrix disorders in diabetes, but its role concerning HA has not been studied so far. In this work we demonstrated that 30 mM D-glucose increased the incorporation of [(3)H]glucosamine in high-molecular-weight (> 2000 kDa) HA of medium and matrix compartments of human mesangial cultures. Simultaneously, the synthesis of HA with lower molecular weight and HA degradation were not altered. The cause of the increased high-molecular-weight HA synthesis consisted in the up-regulation of hyaluronan synthase (HAS) 2 mRNA without alterations of the expression of HAS3, which generates HA of lower molecular weight. D-Glucose at 30 mM also stimulated the production of transforming growth factor beta1 (TGFbeta1), the excessive activation of which was determined by the up-regulation of thrombospondin-1 (TSP-1). The blockage of TGFbeta1 action either by neutralizing anti-TGFbeta1 antibodies or by quenching the TGFbeta1 activation (with TSP-1-derived synthetic GGWSHW peptide) abolished the effect of high glucose on HAS2 mRNA expression and normalized the synthesis of HA. Exogenous human TGFbeta1 had the same effect on HAS2 expression and HA synthesis as high glucose treatment. Therefore, we supposed that TSP-1-dependent TGFbeta1 activation is involved in the observed high glucose effect on HA metabolism. Since high-molecular-weight HA polymers, unlike middle- and low-molecular weight HA oligosaccharides, are known to possess anti-inflammatory and anti-fibrotic functions, we suppose that the enrichment of mesangial matrix with high-molecular-weight HA may represent an endogenous mechanism to limit renal injury in diabetes.


Sign in / Sign up

Export Citation Format

Share Document