Holo- and Hemidirected Coordination Spheres in a Novel Three-Dimensional Polymeric KIPbII Heteropolynuclear Complex: X-Ray Crystal Structure of [KPb(AcO)2(SCN)]n

2004 ◽  
Vol 87 (10) ◽  
pp. 2717-2722 ◽  
Author(s):  
Ali Morsali ◽  
Ali?Reza Mahjoub
2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


1971 ◽  
Vol 49 (3) ◽  
pp. 468-476 ◽  
Author(s):  
Lilian Y. Y. Chan ◽  
F. W. B. Einstein

The crystal structure of potassium hydrogen di-iodate (bi-iodate) KIO3.HIO3 was determined from three dimensional X-ray data collected by counter methods. The structure was refined by full-matrix least-squares techniques to a conventional R factor of 5.0 % for the 1392 observed reflexions. The salt crystallizes in the monoclinic space group P21/c with eight formula units in a cell of dimension a = 7.028(1) Å, b = 8.203(1) Å, c = 21.841(3) Å, β = 98.03(1)°.The iodate units are all basically pyramidal; weak interionic I—O contacts complete a very distorted octahedral environment around three iodine atoms. There is a capped octahedral (7-coordinate) environment around the remaining iodine atom. The I—O bonds are in the range 1.75–1.82 Å and the I—OH bonds are 1.91 and 1.95 Å, variations in length can be correlated with differences in the degree of involvement in (a) hydrogen bonding and (b) interaction with adjacent iodine atoms.


2011 ◽  
Vol 75 (6) ◽  
pp. 2823-2832
Author(s):  
P. Elliott ◽  
A. Pring

AbstractThe crystal structure of the manganese phosphate mineral gatehouseite, ideally Mn52+(PO4)2(OH)4, space group P212121, a = 17.9733(18), b = 5.6916(11), c = 9.130(4) Å, V= 933.9(4) Å3, Z = 4, has been solved by direct methods and refined from single-crystal X-ray diffraction data (T = 293 K) to an R index of 3.76%. Gatehouseite is isostructural with arsenoclasite and with synthetic Mn52+(PO4)2(OH)4. The structure contains five octahedrally coordinated Mn sites, occupied by Mn plus very minor Mg with observed <Mn—O> distances from 2.163 to 2.239 Å. Two tetrahedrally coordinated P sites, occupied by P, Si and As, have <P—O> distances of 1.559 and 1.558 Å. The structure comprises two types of building unit. A strip of edge-sharing Mn(O,OH)6 octahedra, alternately one and two octahedra wide, extends along [010]. Chains of edge- and corner-shared Mn(O,OH)6 octahedra coupled by PO4 tetrahedra extend along [010]. By sharing octahedron and tetrahedron corners, these two units form a dense three-dimensional framework, which is further strengthened by weak hydrogen bonding. Chemical analyses by electron microprobe gave a unit formula of (Mn4.99Mg0.02)Σ5.01(P1.76Si0.07(As0.07)Σ2.03O8(OH)3.97.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 408 ◽  
Author(s):  
Ruo-Yan Li ◽  
Xiao-Xin An ◽  
Juan-Li Wu ◽  
You-Peng Zhang ◽  
Wen-Kui Dong

An unexpected trinuclear Co(II) complex, [Co3(L2)2(μ-OAc)2(CH3OH)2]·2CH3OH (H2L2 = 4,4′-dibromo-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol) constructed from a half-Salamo-based ligand (HL1 = 2-[O-(1-ethyloxyamide)]oxime-4-bromophenol) and Co(OAc)2·4H2O, has been synthesized and characterized by elemental analyses, infrared spectra (IR), UV-Vis spectra, X-ray crystallography and Hirshfeld surface analysis. The Co(II) complex contains three Co(II) atoms, two completely deprotonated (L2)2− units, two bridged acetate molecules, two coordinated methanol molecules and two crystalline methanol molecules, and finally, a three-dimensional supramolecular structure with infinite extension was formed. Interestingly, during the formation of the Co(II) complex, the ligand changed from half-Salamo-like to a symmetrical single Salamo-like ligand due to the bonding interactions of the molecules. In addition, the antimicrobial activities of HL1 and its Co(II) complex were also investigated.


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


1995 ◽  
Vol 50 (4) ◽  
pp. 577-580 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Single crystals of (Cu0.22Mg0.78)BaNd2Mo4O16 have been prepared by crystallization from melts and investigated by X-ray methods. The compound crystallizes monoclinically, space group C62h - C12/c1, Z = 4, a = 5.351(1), b = 12.891(2), c = 19.391(4) Å,β = 90.899(14)° and is isotypic to CuKHo2Mo4O16. The crystal structure is dominated by BaO10 and NdO8 polyhedra forming a three-dimensional polyhedra network, which is filled by axially distorted (Cu,Mg)O6 octahedra and MoO4 tetrahedra.


2013 ◽  
Vol 634-638 ◽  
pp. 451-455
Author(s):  
Yan Yang ◽  
Liu Ting Yan ◽  
Rong Huan Qin ◽  
Wen Gui Duan

The lead(II) Complex constructed with 5-hydroxyisophthalic acid, [Pb3(5-hipa)2]n•4H2O(1), (5-hipa = 5-hydro- xyisophthalic acid) has been synthesized by hydrothermal methods and structurally characterized by elemental analysis, IR and X-ray single crystal diffraction. In trinuclear symmetrical complex 1, Pb1 is four-coordinated, Pb2 and Pb3 are three-coordinated by 5-nitroisophthalic acid groups, respectively, which is further connected through intermolecular hydrogen bonds resulting in a three-dimensional (3D) network.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


Sign in / Sign up

Export Citation Format

Share Document