scholarly journals Using high resolution tracer data to constrain water storage, flux and age estimates in a spatially distributed rainfall-runoff model

2016 ◽  
Vol 30 (25) ◽  
pp. 4761-4778 ◽  
Author(s):  
M. H. J. van Huijgevoort ◽  
D. Tetzlaff ◽  
E. H. Sutanudjaja ◽  
C. Soulsby
10.29007/tfbm ◽  
2018 ◽  
Author(s):  
Julia Kasper ◽  
Georg Pranner ◽  
Franz Simons ◽  
Michael Denhard ◽  
Carsten Thorenz

Heavy rainfall can cause large variations in the water level of navigable waterways when a lot of urban runoff is generated on sealed surfaces and discharged into the river. Due to climate change, extreme weather events will increase in intensity and frequency demanding a better automated water level control at impounded waterways. High- resolution forecasts of catchment rainfall are intended to serve as input to a rainfall- runoff model. Based on the resulting discharge forecasts, a model predictive feed forward controller calculates the ideal water level and discharge across the barrage. The control system is completed by a PI control loop. In this way water level deviations and discharge peaks resulting from stormwater overflow events can be reduced, which enhances the safety of shipping. Regarding the uncertainties of weather predictions, the consequences of an underestimated or overestimated overflow discharge are investigated.


2008 ◽  
Vol 12 (4) ◽  
pp. 1039-1051 ◽  
Author(s):  
J. Younis ◽  
S. Anquetin ◽  
J. Thielen

Abstract. In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods. One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts. This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold – exceedance. As a case study the severe flash flood event which took place on 8–9 September 2002 has been chosen. Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to determine flash floods more than 24 h in advance.


2008 ◽  
Vol 5 (1) ◽  
pp. 1-26 ◽  
Author(s):  
G. Moretti ◽  
A. Montanari

Abstract. The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero Torrent. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The results were checked by using estimates of the peak river flow obtained by applying a classical procedure based on hydrological similarity principles. The analysis highlights interesting perspectives for the application of spatially distributed models to ungauged catchments.


2002 ◽  
Vol 6 (1) ◽  
pp. 25-38 ◽  
Author(s):  
R. J. Moore ◽  
V. A. Bell

Abstract. Intermittent streamflow is a common occurrence in permeable catchments, especially where there are pumped abstractions to water supply. Many rainfall-runoff models are not formulated so as to represent ephemeral streamflow behaviour or to allow for the possibility of negative recharge arising from groundwater pumping. A groundwater model component is formulated here for use in extending existing rainfall-runoff models to accommodate such ephemeral behaviour. Solutions to the Horton-Izzard equation resulting from the conceptual model of groundwater storage are adapted and the form of nonlinear storage extended to accommodate negative inputs, water storage below which outflow ceases, and losses to external springs and underflows below the gauged catchment outlet. The groundwater model component is demonstrated through using it as an extension of the PDM rainfall-runoff model. It is applied to the River Lavant, a catchment in Southern England on the English Chalk, where it successfully simulates the ephemeral streamflow behaviour and flood response together with well level variations. Keywords: groundwater, rainfall-runoff model, ephemeral stream, well level, spring, abstraction


2017 ◽  
Author(s):  
Pertti Ala-aho ◽  
Doerthe Tetzlaff ◽  
James P. McNamara ◽  
Hjalmar Laudon ◽  
Chris Soulsby

Abstract. Tracer-aided hydrological models are increasingly used to reveal fundamentals of runoff generation processes and water travel times in catchments. Modelling studies integrating stable water isotopes as tracers are mostly based in temperate and warm climates, leaving catchments with strong snow-influences catchments underrepresented in the literature. Such catchments are challenging, as the isotopic tracer signals in water entering the catchments as snowmelt are typically distorted from incoming precipitation due to fractionation processes in seasonal snowpack. We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate fluxes, storage and mixing of water and tracers, as well as estimating water ages in three long-term experimental catchments with varying degrees of snow influence and contrasting landscape characteristics. The sites have exceptionally long and rich datasets of hydrometric data and - most importantly - stable water isotopes for both rain and snow conditions. To adapt the STARR model for sites with strong snow-influence, we developed a novel parsimonious calculation scheme that takes into account the isotopic fractionation through snow evaporation and snow melt. The modified STARR setup simulated the stream flows, isotope ratios and snow pack dynamics quite well in all three catchments. From this, our simulations indicated contrasting median water ages and water age distributions between catchments brought about mainly by differences in topography, soils and geology. However, the variable degree of snow influence in catchments also had a major influence on the stream hydrograph, storage dynamics and water age distributions, which was captured by the model. Our study demonstrated the importance of including snow evaporative fractionation processes in tracer-aided modelling for catchments with seasonal snowpack, while the influence of fractionation during snowmelt could not be unequivocally shown. Our work shows the utility of isotopes to provide a proof of concept for our modelling framework in snow influenced catchments.


2008 ◽  
Vol 5 (1) ◽  
pp. 345-377 ◽  
Author(s):  
J. Younis ◽  
S. Anquetin ◽  
J. Thielen

Abstract. In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of human life loss and infrastructures. Over the last two decades, flash floods brought losses of a billion Euros of damage in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available shortrange numerical weather forecasts together with a rainfall-runoff model can be used as early indication for the occurrence of flash floods. One of the challenges in flash flood forecasting is that the watersheds are typically small and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground "truth". The lack of observations in most flash flood prone basins, therefore, lead to develop a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area with leadtimes of the order of the weather forecasts. This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. The critical aspects of using numerical weather forecasting for flash flood forecasting are being described together with a threshold – exceedance. As case study the severe flash flood event which took place on 8–9 September 2002 has been chosen. The short-range weather forecasts, from the Lokalmodell of the German national weather service, are driving the LISFLOOD model, a hybrid between conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to determine flash floods more than 24 hours in advance.


2008 ◽  
Vol 12 (4) ◽  
pp. 1141-1152 ◽  
Author(s):  
G. Moretti ◽  
A. Montanari

Abstract. The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero River. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The hydrological model is first calibrated by using a 1-year record of hourly meteorological data and river flows observed at the outlet of the 1294 km2 wide Secchia River basin, of which the Riarbero is a tributary. The model is then validated by performing a 100-year long simulation of synthetic river flow data, which allowed us to compare the simulated and observed flood frequency distributions at the Secchia River outlet and the internal cross river section of Cavola Bridge, where the basin area is 337 km2. Finally, another simulation of hourly river flows was performed by referring to the outlet of the Riarbero River, therefore allowing us to estimate the related flood frequency distribution. The results were validated by using estimates of peak river flow obtained by applying hydrological similarity principles and a regional method. The results show that the flood flow estimated through the application of the distributed model is consistent with the estimate provided by the regional procedure as well as the behaviors of the river banks. Conversely, the method based on hydrological similarity delivers an estimate that seems to be not as reliable. The analysis highlights interesting perspectives for the application of spatially distributed models to ungauged catchments.


Sign in / Sign up

Export Citation Format

Share Document