scholarly journals Hydrogeology of desert springs in the Panamint Range, California, USA : Geologic controls on the geochemical kinetics, flowpaths, and mean residence times of springs

2020 ◽  
Vol 34 (13) ◽  
pp. 2923-2948
Author(s):  
Carolyn L. Gleason ◽  
Marty D. Frisbee ◽  
Laura K. Rademacher ◽  
Donald W. Sada ◽  
Zachary P. Meyers ◽  
...  
2001 ◽  
Vol 81 (3) ◽  
pp. 299-307 ◽  
Author(s):  
M C Wang ◽  
S H Chang

Humic substances are well known for their long-term persistence in soil environments. The relationship between the mean residence times (MRT) and characteristics of humic substances extracted from a soil with highorganic matter (OM) content in Taiwan was investigated. The MRTs of the soil organic matter (SOM) and its humic substances extracted from the soil samples taken from three depths (0–20, 40–60, and 70–150 cm) of a soil profile were determined by 14C-dating procedures. Moreover, the humic substances were subjected to elemental analysis and investigation by electron spin resonance (ESR), Fourier transform infrared (FTIR), and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopies. The ranges of the MRT of fulvic acids (FA) (MW < 1000), FA (MW > 1000), humic acid (HA) (MW > 1000), and humins (MW > 1000) were 143 ± 110 to 1740 ± 60, 213 ± 120 to 1690 ± 200, 253 ± 60 to 2200 ± 40, and 293 ± 40 to 2173 ± 70 yr, respectively. The higher standard deviations of the means of determined MRTs of FA (MW < 1000) and FAs (MW > 1000) may be due to their lability. Further, the MRTs of the FAs (MW < 1000), FAs (MW > 1000), HAs (MW > 1000), and humins (MW > 1000) increased with increasing soil profile depth, indicating the slow biological and chemical degradations of humic substances in the deeper layers. The elemental composition and spectroscopic properties of FTIR, 13C NMR, and ESR of humic substances did not change significantly with their MRTs. The MRTs in the range observed in this study were apparently long enough to render humic substances a high degree of chemical stability. Key words: Humic substances, mean residence times, ESR, FTIR, 13C NMR, humin


2021 ◽  
Author(s):  
Grant Ferguson ◽  
Mark Cuthbert ◽  
Kevin Befus ◽  
Tom Gleeson ◽  
Chandler Noyes ◽  
...  

&lt;p&gt;Groundwater age and mean residence times have been invoked as measures of groundwater sustainability, with the idea that old or &quot;fossil&quot; groundwater is non-renewable. This idea appears to come from the link between groundwater age and background recharge rates, which are also of questionable use in assessing the sustainability of groundwater withdrawals. The use of groundwater age to assess renewability is further complicated by its relationship with flow system geometry. Young groundwaters near recharge areas are not inherently more renewable than older groundwaters down gradient. Similarly, there is no reason to preferentially use groundwater from smaller aquifers, which will have smaller mean residence times than larger aquifers for the same recharge rate. In some cases, groundwater ages may provide some information where groundwater recharge rates were much higher in the past and systems are no longer being recharged. However, there are few examples where the relationship between depletion and changes in recharge over long time periods has been rigorously explored. Groundwater age measurements can provide insights into the functioning of groundwater flow systems and calibration targets for numerical models and we advocate for their continued use, but they are not a metric of sustainable development. Simple metrics to assess groundwater sustainability remain elusive and a more holistic approach is warranted to maintain water levels and environmental flows.&lt;/p&gt;


2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

&lt;p&gt;Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, it is necessary for soil C models to represent these measurable quantities so that model processes can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed in 2018 to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three independent data sets of soil fractionation measurements spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=716). Considering RMSE and AIC as indices of model performance, site-level evaluations show that Millennial V2 predicts soil organic carbon content better than the widely-used Century model, despite an increase in process complexity and number of parameters. Millennial V2 also reproduces between-site variation in SOC across gradients of climate, plant productivity, and soil type. By including the additional constraints of measured soil fractions, we can predict site-level mean residence times similar to a global distribution of mean residence times measured using SOC/respiration rate under an assumption of steady state. The Millennial V2 model updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.&lt;/p&gt;


Author(s):  
J.M. Villalba ◽  
R. Varón ◽  
E. Arribas ◽  
R. Diaz-Sierra ◽  
F. Garcia-Sevilla ◽  
...  

The symbolic time course equations corresponding to a general model of a linear compartmental system, closed or open, with or without traps and with zero input are presented in this chapter. From here, the steady state equations are obtained easily from the transient phase equations by setting the time towards infinite. Special attention is given to the open systems, for which an exhaustive kinetic analysis has been developed to obtain important properties. Besides, the results are particularized to open systems without traps. The software COEFICOM, easy to use and with a user-friendly format of the input of data and the output of results, allows the user to obtain the symbolic expressions of the coefficients involved in the general symbolic equation and all the information necessary to derive the symbolic time course equations for closed or open systems as well as for the derivation of the mean residence times.


2014 ◽  
Vol 18 (6) ◽  
pp. 2415-2431 ◽  
Author(s):  
S. Tekleab ◽  
J. Wenninger ◽  
S. Uhlenbrook

Abstract. Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as more than 70% of total Nile water flow originates from the Ethiopian highlands. Stable isotope compositions in precipitation, spring water and streamflow were analysed (i) to characterise the spatial and temporal variations of water fluxes; (ii) to estimate the mean residence time of water using a sine wave regression approach; and (iii) to identify runoff components using classical two-component hydrograph separations on a seasonal timescale. The results show that the isotopic composition of precipitation exhibits marked seasonal variations, which suggests different sources of moisture generation for the rainfall in the study area. The Atlantic–Indian Ocean, Congo basin, Upper White Nile and the Sudd swamps are the potential moisture source areas during the main rainy (summer) season, while the Indian–Arabian and Mediterranean Sea moisture source areas during little rain (spring) and dry (winter) seasons. The spatial variation in the isotopic composition is influenced by the amount effect as depicted by moderate coefficients of determination on a monthly timescale (R2 varies from 0.38 to 0.68) and weak regression coefficients (R2 varies from 0.18 to 0.58) for the altitude and temperature effects. A mean altitude effect accounting for −0.12‰/100 m for 18O and −0.58‰/100 m for 2H was discernible in precipitation isotope composition. Results from the hydrograph separation on a seasonal timescale indicate the dominance of event water, with an average of 71 and 64% of the total runoff during the wet season in the Chemoga and Jedeb catchments, respectively. Moreover, the stable isotope compositions of streamflow samples were damped compared to the input function of precipitation for both catchments. This damping was used to estimate mean residence times of stream water of 4.1 and 6.0 months at the Chemoga and Jedeb catchment outlets, respectively. Short mean residence times and high fractions of event water components recommend catchment management measures aiming at reduction of overland flow/soil erosion and increasing of soil water retention and recharge to enable sustainable development in these agriculturally dominated catchments.


Sign in / Sign up

Export Citation Format

Share Document