Impacts of sediment load on Manning coefficient in supercritical shallow flow on steep slopes

2010 ◽  
Vol 24 (26) ◽  
pp. 3909-3914 ◽  
Author(s):  
Guang-hui Zhang ◽  
Rong-ting Luo ◽  
Ying Cao ◽  
Rui-chang Shen ◽  
X. C. Zhang
2010 ◽  
Vol 35 (15) ◽  
pp. 1811-1819 ◽  
Author(s):  
Guang-hui Zhang ◽  
Rui-chang Shen ◽  
Rong-ting Luo ◽  
Ying Cao ◽  
XC Zhang

2021 ◽  
Author(s):  
Alessio Nicosia ◽  
Vito Ferro

<p>Rills are small, steep sloping and ephemeral channels, shaped in soils, in which shallow flows move. Rill erosion strictly depends on hydraulic characteristics of the rill flow and for this reason flow discharge <em>Q</em>, rill width <em>w</em>, water depth <em>h</em>, mean flow velocity <em>V</em>, and friction factor are required to model the rill erosion process.</p><p>Erosive phenomena strictly depend on the attitude of the soil particles to be detached (<em>detachability</em>) and to be transported (<em>transportability</em>). These properties are affected by soil texture and influence the sediment load <em>G</em> to be transported by flow. The actual sediment load depends on the transport capacity <em>T<sub>c</sub></em> of the flow, which is the maximum amount of sediment, with given sizes and specific weight, that can be transported by a flow of known hydraulic characteristics.</p><p>According to Jiang et al. (2018) the hydraulic mechanisms of soil erosion for steep slopes are different from those for gentle slopes. Recent research on <em>T<sub>c </sub></em>equations exploring slopes steeper than 18% (Ali et al., 2013; Zhang et al., 2009; Wu et al., 2016) established that <em>T<sub>c</sub></em> relationships designed for gentle slopes (<18%) are unsuitable to be applied to steep slopes (17–47%). Also Peng et al. (2015) noticed that <<<em>there has been little research concerning rill flow on steep slopes (e.g. slope gradients higher than 10°)</em>>>. In other words, the slope of 18% could be used to distinguish between the “gentle slope” and the “steep slope” case for the recognized difference in hydraulic and sediment transport variables.</p><p>The applicability of a theoretical rill flow resistance equation, based on the integration of a power velocity distribution (Barenblatt, 1979; 1987), was tested using measurements carried out in mobile rills shaped on plots having different slopes (9, 14, 15, 18, 22, 24, 25 and 26%) and soil textures (clay fractions ranging from 32.7% to 73% and silt of 19.9% – 30.9%), and measurements available in literature (Jiang et al. (2018), Huang et al. (2020) and Yang et al. (2020)).</p><p>The Darcy-Weisbach friction factor resulted dependent on slope, Froude number, Reynolds number and <em>CLAY</em> and <em>SILT</em> percentages, which represent soil transportability and detachability, respectively. This theoretical approach was applied to two different databases distinguished by the slope threshold of 18%. The results showed that, for gentle slopes (< 18%), the Darcy-Weisbach friction factor increases with slope, <em>CLAY</em> and <em>SILT</em> content. Taking into account that for gentle slopes the hydraulic characteristics limit the transport capacity, for this condition <em>T<sub>c</sub></em> and the sediment load <em>G</em> are both limiting factors.</p><p>For steep slopes (> 18%), the flow resistance increases with slope and the ratio between <em>SILT</em> and <em>CLAY</em> percentage. Steep slopes determine high values of the transport capacity, which is consequently not a limiting factor. Thus, in this condition the actual sediment load is determined exclusively by the ratio between <em>SILT</em> and <em>CLAY</em> percentage. In other words, the only limiting factor for a steep slope condition is the sediment which can be transported (i.e. the sediment load <em>G</em>), affected by its soil detachability and transportability.</p>


2016 ◽  
Vol 12 (4) ◽  
Author(s):  
Ari Sandyavitri

This paper objectives are to; (i) identification of risky slopes (within 4 Provinces in Sumatra including Provinces of Riau, West Sumatra, Jambi and South Sumatra encompassing 840 kms of the “Jalan Lintas Sumatra” highway) based on Rockfall Hazard Rating Systems (RHRS) method; (ii) developing alternatives to stabilize slope hazards, and (iii) selecting appropriate slopes stabilization techniques based on both proactive approach and value engineering one. Based on the Rockfall Hazard Rating Systems (RHRS) method, it was identified 109 steep slopes prone to failure within this highway section. Approximately, 15 slopes were identified as potential high-risk slopes (RHRS scores were calculated >200 points). Based on the proactive approach, seven riskiest slopes ware identified. The preferred stabilization alternatives to remedy most of these slopes are suggested as follow; either (i) a combination of retaining wall and drainage, or (ii) gabion structure and drainage. However, different approaches may yield different results, there are at least 2 main consideration in prioritizing slope stabilization; (i) based on the riskiest slopes, and(ii) the least expensive stabilization alternatives.


2018 ◽  
Vol 10 (4) ◽  
pp. 35-41
Author(s):  
P.N. Proyezdov ◽  
◽  
D.A. Mashtakov ◽  
A.N. Avtonomov ◽  
◽  
...  

2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Heru Sri Naryanto

Karanganyar District is a hilly area with steep slopes, rock constituent of young volcanic deposits of Lawu Volcano products, thick soil and relatively high rainfall, so it is potential for large landslides in this region. The landuse in the Karanganyar District including the Tengklik Village is generally dominated by rice fields, seasonal gardens and settlements. Plantation made up in areas with steep topography has great influence on erosion and landslides. Similarly, many settlements are built on a slope so that the area is very vulnerable to the threat of landslides. In the rainy season landslides are common. The potential hazard of landslidesoccurred in 14 sub districts in Karanganyar District. Large landslides have occurred in Karanganyar on December 26, 2007 which claimed the lives of 62 people, with the greatest victims were in the Ledoksari Village, Tawangmangu. The Tengklik Village has already experienced creep type landslides, which have destroyed settlements, roads, seasonalgardens and all existing infrastructure in the area. In order to do the proper handling and anticipation of a catastrophic landslide, a variety of technological applications landslides using geographic information system (GIS) was then carried out, to detect the configuration of 2D geoelectrical subsurface prone areas for landslide risk study and regional planning.


Author(s):  
Matheus Souisa ◽  
Paulus R. Atihuta ◽  
Josephus R. Kelibulin

Ambon City is a region consisting of hilly areas and steep slopes with diverse river characteristics. Research has been carried out in the Wae Ruhu watershed in Ambon City which starts from upstream (water catchment) to downstream. This study aims to determine the magnitude of river discharge and sediment discharge in the Wae Ruhu watershed. This research was conducted in several stages including, secondary data collection, research location survey, preparation of research tools and materials as well as field data retrieval processes which included tracking coordinates at each station point and entire watershed, calculation of river flow velocity, river geometry measurements, and sampling sediment. The results showed that the average river discharge in the Wae watershed in the year 2018 was 1.24 m3 / s, and the average sediment discharge was 6.27 kg / s. From the results of this study and the field observations proposed for flood prevention and the rate of sediment movement are the construction of cliffs with sheet pile and gabions.


2002 ◽  
pp. 42-62 ◽  
Author(s):  
A. I. Solomeshch ◽  
V. B. Martynenko ◽  
O. Yu. Zhigunov

Xerophillous pine-larch forests of the Southern Ural have been described as a new alliance Caragano fruti­cis—Pinion sylvestris. They occur on steep slopes of upper parts of mountain ridges with poorely developed stony soils. Alliance asigned to the class Brachypodio pinnati—Betuletea pendulae, order Chamaecytiso ruthe­nici—Pinetalia sylvestris. Associations Carici caryophyl­leae—Pinetum sylvestris and Ceraso fruticis—Pinetum sylvestris with four subassociations are described. Eco­logical and floristical peculiarities of new alliance in comparison with another alliances of the order Cha­maecytiso-Pinetalia and with siberian class Rhytidio rugosi—Laricetea sibiricae have been discussed.


Sign in / Sign up

Export Citation Format

Share Document