Uncertainty issues of a conceptual water balance model for a semi-arid watershed in north-west of China

2012 ◽  
Vol 27 (2) ◽  
pp. 304-312 ◽  
Author(s):  
Zhanling Li ◽  
Quanxi Shao ◽  
Zongxue Xu ◽  
Chong-Yu Xu
2009 ◽  
Vol 40 (4) ◽  
pp. 364-379 ◽  
Author(s):  
Scott Rayburg ◽  
Martin Thoms

Wetlands, particularly those in semi-arid or arid environments, are hotspots of biological diversity and productivity. Water resource managers are therefore increasing their efforts to conserve wetlands from environmental degradation. To do this, they require a thorough understanding of the wetting and drying regimes of these wetlands, and how potential land use, climate change and water resource development might affect inundation patterns. Hydrologic models can help to enhance this understanding, and to predict and assess future impacts. However, for semi-arid environments, data to assist in model construction is scarce. This paper presents a new method for developing a water balance model for a semi-arid wetland, the Narran Lakes ecosystem in eastern Australia. This method combines hydraulic (improving our understanding of water movement through a wetland) and hydrologic (improving our predictive capability for inundation levels) models and satellite imagery (acting as calibration and validation data) to produce a predictive model of wetland inundation. We show that this coupled hydraulic–hydrologic model yields inundation patterns commensurate with those that actually occurred over more than 30 years. The model results indicate that current inundation levels are at historical lows, which is most likely associated with a naturally occurring drought and increasing water resource development upstream.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 40
Author(s):  
Nick Martin

A framework for the assessment of relative risk to watershed-scale water resources from systemic changes is presented. It is composed of two experiments, or pathways, within a Monte Carlo structure and provides quantification of prediction uncertainty. One simulation pathway is the no change, or null hypothesis, experiment, and the other provides simulation of the hypothesized system change. Each pathway uses a stochastic weather generator and a deterministic water balance model. For climate change impact analysis, the framework is calibrated so that the differences between thirty-year average precipitation and temperature pathway values reproduce climate trends. Simulated weather provides forcing for identical water balance models. Probabilistic time histories of differences in actual evapotranspiration, runoff, and recharge provide likelihood per magnitude change to water resources availability. The framework is applied to a semi-arid watershed in Texas. Projected climate trends for the site are a 3 °C increase in average temperature and corresponding increase in potential evapotranspiration, no significant change in average annual precipitation, and a semi-arid classification from 2011–2100. Two types of water balance model are used in separate applications: (1) monthly water balance and (2) daily distributed parameter. Both implementations predict no significant change, on average, to actual evapotranspiration, runoff, or recharge from 2011–2100 because precipitation is unchanged on average. Increases in extreme event intensity are represented for future conditions producing increased water availability during infrequent events.


2014 ◽  
Vol 519 ◽  
pp. 1848-1858 ◽  
Author(s):  
Francisco Pellicer-Martínez ◽  
José Miguel Martínez-Paz

Sign in / Sign up

Export Citation Format

Share Document