Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway

2002 ◽  
Vol 98 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Ayako Nakashio ◽  
Naoya Fujita ◽  
Takashi Tsuruo
2011 ◽  
Vol 317 (20) ◽  
pp. 2904-2913 ◽  
Author(s):  
Huimin Zhang ◽  
Yaling Han ◽  
Jie Tao ◽  
Shaowei Liu ◽  
Chenghui Yan ◽  
...  

2005 ◽  
Vol 329 (2) ◽  
pp. 573-582 ◽  
Author(s):  
Nicholas Von Offenberg Sweeney ◽  
Philip M. Cummins ◽  
Eoin J. Cotter ◽  
Paul A. Fitzpatrick ◽  
Yvonne A. Birney ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


Ophthalmology ◽  
1981 ◽  
Vol 88 (9) ◽  
pp. 986-991 ◽  
Author(s):  
Bert M. Glaser ◽  
Patricia A. D’Amore ◽  
Ronald G. Michels

2013 ◽  
Vol 7 (6) ◽  
pp. 472-478 ◽  
Author(s):  
Xianliang Huang ◽  
Yang Shen ◽  
Yi Zhang ◽  
Lin Wei ◽  
Yi Lai ◽  
...  

2012 ◽  
Vol 16 (2) ◽  
pp. 296-305 ◽  
Author(s):  
Shuhui Zheng ◽  
Jinghe Huang ◽  
Kewen Zhou ◽  
Qiuling Xiang ◽  
Yaxing Zhang ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


2015 ◽  
Vol 231 (4) ◽  
pp. 934-943 ◽  
Author(s):  
Michael D. Bear ◽  
Tiegang Liu ◽  
Shereen Abualkhair ◽  
Maher A. Ghamloush ◽  
Nicholas S. Hill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document