p21-ras-peptide-specific T-cell responses in a patient with colorectal cancer. CD4+ and CD8+ T cells recognize a peptide corresponding to a common mutation (13Gly → Asp)

2007 ◽  
Vol 56 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Beate Fossum ◽  
Tobias Gedde-Dahl ◽  
Jarle Breivik ◽  
Jon Amund Eriksen ◽  
Anne Spurkland ◽  
...  
2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A72-A72
Author(s):  
Orsolya Lorincz ◽  
Levente Molnar ◽  
Zsolt Csiszovszki ◽  
Eszter Somogyi ◽  
Jozsef Toth ◽  
...  

BackgroundVaccines have little chance of destroying heterogeneous tumor cells since they rarely induce polyclonal T-cell responses against the tumor. The main challenge is the accurate identification of tumor targets recognizable by T cells. Presently, 6–8% of neoepitopes selected based on the patients‘ tumor biopsies are confirmed as real T cell targets.1 2. To overcome this limitation, we developed a computational platform called Personal Antigen Selection Calculator (PASCal) that identifies frequently presented immunogenic peptide sequences built on HLA-genetics and tumor profile of thousands of real individuals.3 Here we show the performance of PASCal for the identification of both shared and personalized tumor targets in metastatic colorectal cancer (mCRC) and breast cancer subjects.MethodsExpression frequency of the tumor-specific antigens (TSAs) ranked in PASCal’s database (based on 7,548 CRC specimen) was compared to the RNA-sequencing data of CRC tumors obtained from TCGA. Using PASCal, 12 shared PEPIs (epitopes restricted to at least 3 HLA class I alleles of a subject from an in silico cohort) derived from 7 TSAs were selected as frequent targets (calculated probability: average 2.5 [95%CI 2.4–2.8] TSAs/patient). Spontaneous immune responses against each of the twelve 9mer peptides were determined by ELISpot using PBMCs of 10 mCRC subjects who participated in the OBERTO-101 study.4 PEPIs selected for a breast cancer subject based on her HLA genotype were also tested.ResultsEach of the 106 tumors analyzed expressed at least 13, average 15 of the 20 top-ranked TSAs in PASCal’s database confirming their prevalence in CRC. 7/10 subjects had spontaneous CD8+ T-cell responses against at least one peptide selected with PASCal. Each peptide (12/12) was recognized by at least one patient. Patients‘ T-cells reacted with average 3.6/12 (30%) peptides confirming the expression of average 2.8 [95%CI 1.0–4.6] TSAs (n=10). After HLA-matching, among the subjects for whom we could select at least 4 PEPIs (average 5) from the list of 12 peptides (n=6), average 2.5 (50%) peptides were positive. Of the 12 PEPIs selected with PASCal for a breast cancer subject, we detected spontaneous T-cell responses against 9 PEPIs, indicating that at least 75% of the selected peptides were present in the subject’s tumor and were recognized by T-cells.ConclusionsPASCal platform accommodates both tumor- and patient heterogeneity and identifies non-mutated tumor targets that may trigger polyclonal cytotoxic T-cell responses. It is a rapid tool for the design of both off-the-shelf and personalized cancer vaccines negating the need for tumor biopsy.ReferencesWells DK, van Buuren MM, Dang KK, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 2020:183(3):818–34.e13.Bulik-Sullivan B, Busby J, Palmer CD, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotech 2018:37:55–63.Somogyi E, Csiszovszki Z, Lorincz O, et al. 1181PDPersonal antigen selection calculator (PASCal) for the design of personal cancer vaccines. Annal Oncol 2019:30(Supplement_5):v480-v81.Hubbard J, Cremolini C, Graham R, et al. P329 PolyPEPI1018 off-the shelf vaccine as add-on to maintenance therapy achieved durable treatment responses in patients with microsatellite-stable metastatic colorectal cancer patients (MSS mCRC). J ImmunoTher Cancer 2019:7(1):282.


2021 ◽  
Author(s):  
Leonardo Estrada ◽  
Didem Agac Cobanoglu ◽  
Aaron Wise ◽  
Robert Maples ◽  
Murat Can Cobanoglu ◽  
...  

Viral infections drive the expansion and differentiation of responding CD8+ T cells into variegated populations of cytolytic effector and memory cells. While pro-inflammatory cytokines and cell surface immune receptors play a key role in guiding T cell responses to infection, T cells are also markedly influenced by neurotransmitters. Norepinephrine is a key sympathetic neurotransmitter, which acts to suppress CD8 + T cell cytokine secretion and lytic activity by signaling through the beta2-adrenergic receptor (ADRB2). Although ADRB2 signaling is considered generally immunosuppressive, its role in regulating differentiation of effector T cells in response to infection has not been investigated. Using an adoptive transfer approach, we compared the expansion and differentiation of wild type (WT) to Adrb2-/- CD8 + T cells throughout the primary response to vesicular stomatitis virus (VSV) infection in vivo. We measured the dynamic changes in transcriptome profiles of antigen-specific CD8 + T cells as they responded to VSV. Within the first 7 days of infection, WT cells out-paced the expansion of Adrb2-/- cells, which correlated with reduced expression of IL-2 and the IL-2Ralpha; in the absence of ADRB2. RNASeq analysis identified over 300 differentially expressed genes that were both temporally regulated following infection and selectively regulated in WT vs Adrb2-/- cells. These genes contributed to major transcriptional pathways including cytokine receptor activation, signaling in cancer, immune deficiency, and neurotransmitter pathways. By parsing genes within groups that were either induced or repressed over time in response to infection, we identified three main branches of genes that were differentially regulated by the ADRB2. These gene sets were predicted to be regulated by specific transcription factors involved in effector T cell development, such as Tbx21 and Eomes. Collectively, these data demonstrate a significant role for ADRB2 signaling in regulating key transcriptional pathways during CD8 + T cells responses to infection that may dramatically impact their functional capabilities and downstream memory cell development.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexandria C Wells ◽  
Keith A Daniels ◽  
Constance C Angelou ◽  
Eric Fagerberg ◽  
Amy S Burnside ◽  
...  

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


2021 ◽  
Author(s):  
Suhas Sureshchandra ◽  
Sloan A. Lewis ◽  
Brianna Doratt ◽  
Allen Jankeel ◽  
Izabela Ibraim ◽  
...  

mRNA based vaccines for SARS-CoV-2 have shown exceptional clinical efficacy providing robust protection against severe disease. However, our understanding of transcriptional and repertoire changes following full vaccination remains incomplete. We used single-cell RNA sequencing and functional assays to compare humoral and cellular responses to two doses of mRNA vaccine with responses observed in convalescent individuals with asymptomatic disease. Our analyses revealed enrichment of spike-specific B cells, activated CD4 T cells, and robust antigen-specific polyfunctional CD4 T cell responses in all vaccinees. On the other hand, CD8 T cell responses were both weak and variable. Interestingly, clonally expanded CD8 T cells were observed in every vaccinee, as observed following natural infection. TCR gene usage, however, was variable, reflecting the diversity of repertoires and MHC polymorphism in the human population. Natural infection induced expansion of larger CD8 T cell clones occupied distinct clusters, likely due to the recognition of a broader set of viral epitopes presented by the virus not seen in the mRNA vaccine. Our study highlights a coordinated adaptive immune response where early CD4 T cell responses facilitate the development of the B cell response and substantial expansion of effector CD8 T cells, together capable of contributing to future recall responses.


Blood ◽  
2012 ◽  
Vol 119 (4) ◽  
pp. 967-977 ◽  
Author(s):  
Agostinho Carvalho ◽  
Antonella De Luca ◽  
Silvia Bozza ◽  
Cristina Cunha ◽  
Carmen D'Angelo ◽  
...  

Abstract Aspergillus fumigatus is a model fungal pathogen and a common cause of severe infections and diseases. CD8+ T cells are present in the human and murine T-cell repertoire to the fungus. However, CD8+ T-cell function in infection and the molecular mechanisms that control their priming and differentiation into effector and memory cells in vivo remain elusive. In the present study, we report that both CD4+ and CD8+ T cells mediate protective memory responses to the fungus contingent on the nature of the fungal vaccine. Mechanistically, class I MHC-restricted, CD8+ memory T cells were activated through TLR3 sensing of fungal RNA by cross-presenting dendritic cells. Genetic deficiency of TLR3 was associated with susceptibility to aspergillosis and concomitant failure to activate memory-protective CD8+ T cells both in mice and in patients receiving stem-cell transplantations. Therefore, TLR3 essentially promotes antifungal memory CD8+ T-cell responses and its deficiency is a novel susceptibility factor for aspergillosis in high-risk patients.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Anna von Rossum ◽  
Winnie Enns ◽  
Yu P Shi ◽  
Jonathan C Choy

Transplant vasculopathy (TV) is an arteriosclerotic disease characterized by intimal thickening of allograft arteries and is a leading cause of heart transplant rejection. T cell responses towards allograft arteries are responsible for the development of TV and understanding the regulatory pathways controlling T cell activation in allograft arteries provides opportunities for the therapeutic attenuation of TV as well as other arteriosclerotic diseases. Bim is a pro-apoptotic Bcl-2 protein known to down-regulate immune responses after viral infections by inducing cell death of effector T cells but its role in regulating allogeneic T cell responses is not known. We compared cell death and alloantigen-driven activation of T cells from Bim +/+ (wild-type), Bim +/- and Bim -/- mice as well as the development of TV in these mice. Bim was required for cell death of both CD4 and CD8 T cells in response to cytokine deprivation in vitro . Unexpectedly, Bim was also required for alloantigen-induced proliferation of both CD4 and CD8 T cells as well as for IL-2 production. When TV was examined in aortic interposition grafts implanted into complete major histocompatibility complex-mismatched mice, intimal thickening was significantly reduced in Bim +/- but not Bim -/- recipients as compared to Bim +/+ counterparts. There was signficantly less CD4 T cell accumulation in the intima of arteries from Bim +/- as compared to Bim +/+ recipients but this effect was not observed in Bim -/- recipients. The accumulation of CD8 T cells in allograft arteries was not affected by differences in Bim expression. Taken together, our data support a novel role for Bim in driving T cell activation in response to allogeneic stimuli and indicate that the effects of this Bcl-2 protein in the pathogenesis of TV likely depends on its dual role in supporting T cell activation and death.


Sign in / Sign up

Export Citation Format

Share Document