Calculating Sunshine Hours and Reference Evapotranspiration in Arid Regions When Solar Radiation Data are Limited

2015 ◽  
Vol 64 (3) ◽  
pp. 419-425 ◽  
Author(s):  
Mohamed H. Abd el-wahed ◽  
Richard L. Snyder
Author(s):  
Rahima Ummi Kulsum Nadya ◽  
Ali Najah Ahmed ◽  
Abdoulhdi A. Borhana ◽  
N. A. Mardhiah ◽  
Amr El-Shafie ◽  
...  

<span>The solar radiation prediction in Kuala Terengganu located in Terengganu, Malaysia was investigated in this study to improve the solar system design. Solar radiation data and number of parameters such as solar radiation, temperature, humidity, wind speed and sunshine hours were obtained from Malaysian Meteorological Malaysia MMD. In order to predict the solar radiation, Genetic Programming Techniques (GP) models were develop and tested. Two scenarios were considered in this study in order to validate the efficiency of the proposed model. Coefficients of determination (R2) for the solar radiation during training and testing phases were ranged between 0.99402 to 0.98934 for all months of the year. This study confirms the ability of GP to predict solar radiation values precisely and accurately. The predictions from the GP models could enable scientists to locate <br /> and design solar energy systems in Malaysia.</span>


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Okwunna M Umego ◽  
Temitayo A Ewemoje ◽  
Oluwaseun A Ilesanmi

This study was carried out to assess the variations of Reference Evapotranspiration (ETO also denoted with RET) calculated using FAO-56 Penman Monteith model of two locations Asaba and Uyo and evaluate its relationships with the variations of other climatic parameters. Meteorological data of forty one years (1975-2015) and thirty five years (1981-2015) period for Asaba and Uyo, respectively gotten from Nigeria Meteorological Agency, Abuja were used. It was observed that the variations of Evapotranspiration (ET) in both locations were in line with two seasons (rainy and dry) normally experienced in Nigeria having its highest value in March (4.8 mm/day) for Asaba and for Uyo in February (4.5 mm/day); and its lowest value in August (3.1 mm/day) for Asaba and in July (2.9 mm/day) for Uyo. ET variation when compared with other climatic variables in both locations was observed to have the same trend with maximum temperature, solar radiation and sunshine hours. It also has the same variation with minimum temperature though with slight deviation. It was observed that ET variation is inversely proportional to the variation relative humidity. Wind speed displayed relatively small variation in its trend over the study period and is not in line with the variations of ET.Keywords— Evapotranspiration, Climatic Variables, FAO Penman-Monteith Model, Variations


2012 ◽  
Vol 44 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Ana Pour-Ali Baba ◽  
Jalal Shiri ◽  
Ozgur Kisi ◽  
Ahmad Fakheri Fard ◽  
Sungwon Kim ◽  
...  

Daily reference evapotranspiration (ET0), as a dependent variable, was estimated for two weather stations in South Korea, using 8 years (1985–1992) of measurements of independent variables of air temperature, sunshine hours, wind speed and relative humidity. The model uses the adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for estimating daily ET0. In the first part of the study, the applied models were trained, tested and validated using various combinations of the recorded independent variables, which corresponded to the Hargreaves–Samani, Priestly–Taylor and FAO56-PM equations. The goodness of fit for the models was evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe coefficient (NS). In the second part of the study, the estimated solar radiation data were applied as input parameters (for the same input combinations, as the first part), instead of recorded sunshine values. The results indicated that the both applied ANFIS and ANN models performed quite well in ET processes from the available climatic data. The results also showed that the application of estimated solar radiation data instead of the recorded sunshine values decreases the models’ accuracy.


2002 ◽  
Vol 139 (1) ◽  
pp. 87-93 ◽  
Author(s):  
A. K. SHINDE ◽  
RAGHAVENDRA BHATTA ◽  
S. K. SANKHYAN ◽  
D. L. VERMA

A study of the physiological responses and energy expenditure of goats was carried out from June 1999 to May 2000 by conducting two experiments: one on bucks maintained on stall feeding in autumn 1999 (Expt 1) followed by year-round grazing on native ranges over three seasons: monsoon, winter and summer (Expt 2). Physiological responses and energy expenditure (EE) measurements of housed and grazing goats were recorded at 06.00 h and 14.00 h for 5 consecutive days in each season. Goats were fixed with a face mask and meteorological balloon for collection of expired air and measurement of EE. Respiration rate (RR) at 06.00 h was similar in all seasons (14 respiration/min) except in the monsoon, where a significantly (P<0.05) higher value (26 respiration/min) was recorded. At 14.00 h, RR was higher in monsoon and summer (81 and 91 respiration/min) than in winter (52 respiration/min). Irrespective of the season, heart rate (HR) was higher at 14.00 h (86 beat/min) than at 06.00 h (64 beat/min). The rise of rectal temperature (RT) from morning (06.00 h) to peak daily temperature (14.00 h) was 0.9 °C in housed goats in autumn and 1.0, 2.1 and 2.0 °C in grazing goats during monsoon, winter and summer, respectively. The mean value was 1.7 °C. Skin temperature (ST) was lowest in winter (30.1 °C) and highest at 14.00 h in summer (40.3 °C). Energy expenditure of goats at 06.00 h was 32.7 W in winter and significantly (P<0.05) increased to 52.0 W in summer and 107.8 W in monsoon. At 14.00 h, EE was 140.2 W in winter and increased to 389.0 W and 391.3 W respectively in monsoon and summer. It is concluded that monsoon and summer are both stressful seasons in semi-arid regions. Animals should be protected from direct solar radiation during the hottest hours of the day to ameliorate the effect of heat stress.


Sign in / Sign up

Export Citation Format

Share Document