Now is the Time for Flushing Raw-Water Mains

Opflow ◽  
1978 ◽  
Vol 4 (5) ◽  
pp. 3-3
Keyword(s):  
2017 ◽  
Vol 12 (2) ◽  
pp. 105-116
Author(s):  
Pulung A. Pranantya ◽  
Nurlia Sadikin

In terms of geology, most areas in south of the Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the existence of underground river in caves, however, indicate the potential amount of water within the area, especially in the eastern part of the Gunungkidul District. Although limited information available, some fishermen have discovered that Seropan cave contains fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using a multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The isopach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results, i.e. 110o2223.6388 EL 8o42.874 SL. [DY1][PP2][DY1]Perbaiki grammarIn terms of geology, most areas in south of Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the exixtence of underground river in caves, however, indicate potential amount of water within the area especially in eastern part of Gunungkidul District. Although limited information available, some fishermans has discovered that Seropan cave contain fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The iso pach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results i.e. 110o2223.6388 EL 8o42.874 SL.[PP2]Sudah diperbaiki


2008 ◽  
Vol 7 (6) ◽  
pp. 737-741 ◽  
Author(s):  
Diana Robescu ◽  
Nicolae Jivan ◽  
Dan Robescu

2001 ◽  
Vol 50 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Chen-Yu Chang ◽  
Yung-Hsu Hsieh ◽  
Yu-Min Lin ◽  
Po-Yu Hu ◽  
Chin-Chuan Liu ◽  
...  

2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


2002 ◽  
Vol 2 (2) ◽  
pp. 131-137
Author(s):  
N.D. Basson ◽  
C.F. Schutte

The paper deals with laboratory and full-scale studies aimed at optimising treatment processes at the Balkfontein plant of Sedibeng Water in South Africa. The raw water is highly eutrophic and contains a large fraction of treated effluent from domestic and industrial sources as well as agricultural runoff. The eutrophic nature and changing raw water quality give rise to many operational difficulties and high treatment costs as well as problems with the final water quality. Optimisation of the coagulation and chlorination processes was seen as a cheaper solution to these problems than to install advanced processes such as ozonation and activated carbon adsorption that would add greatly to treatment costs. The laboratory studies indicated that through optimisation of coagulation-flocculation and by replacement of pre-chlorination by intermediate chlorination (after primary sedimentation) most of the treatment problems could be solved and final water of the required quality produced without a large increase in treatment costs.


Sign in / Sign up

Export Citation Format

Share Document