The Use of a Novel Ferulic Acid Esterase from Lactobacillus acidophilus K1 for the Release of Phenolic Acids from Brewer's Spent Grain

2010 ◽  
Vol 116 (3) ◽  
pp. 293-303 ◽  
Author(s):  
Dominik Szwajgier ◽  
Adam Waśko ◽  
Zdzisław Targoński ◽  
Monika Niedźwiadek ◽  
Monika Bancarzewska
Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 600 ◽  
Author(s):  
Pedro Ideia ◽  
Ivo Sousa-Ferreira ◽  
Paula C. Castilho

This work aims to develop simpler methodologies of extracting ferulic acid (FA) from brewer’s spent grain (BSG). BSG is produced by brewing companies at high amounts all over the year and does not possess a direct application. Thus, its use as raw material for extraction of bioactive compounds has gained attention in the last years. FA has different interesting applications in cosmetics, food industry, and pharmaceutics. Several studies aim for its extraction from BSG by various methods, namely alkaline hydrolysis. In the present work, we suggest the use of autoclave to process higher amounts of BSG in a lab scale. A simplification of the regular post-hydrolysis procedures is also proposed to decrease the number of experimental steps and energy costs and to simultaneously increase the extraction yield (up to 470 mg of FA per 100 g of BSG). The adsorption of extracted FA in a synthetic resin is suggested as a partial purification method.


2019 ◽  
Vol 75 (1) ◽  
pp. 41-47
Author(s):  
Nina G. Heredia-Sandoval ◽  
María del Carmen Granados-Nevárez ◽  
Ana M. Calderón de la Barca ◽  
Francisco Vásquez-Lara ◽  
Lovemore N. Malunga ◽  
...  

2009 ◽  
Vol 100 (23) ◽  
pp. 5917-5921 ◽  
Author(s):  
Charilaos Xiros ◽  
Maria Moukouli ◽  
Evangelos Topakas ◽  
Paul Christakopoulos

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Olga Marchut-Mikołajczyk ◽  
Piotr Drożdżyński ◽  
Arkadiusz Polewczyk ◽  
Wojciech Smułek ◽  
Tadeusz Antczak

Abstract Background Microbial surfactants called biosurfactants, thanks to their high biodegradability, low toxicity and stability can be used not only in bioremediation and oil processing, but also in the food and cosmetic industries, and even in medicine. However, the high production costs of microbial surfactants and low efficiency limit their large-scale production. This requires optimization of management conditions, including the possibility of using waste as a carbon source, such as food processing by-products. This papers describes the production and characterization of the biosurfactant obtained from the endophytic bacterial strain Bacillus pumilus 2A grown on various by-products of food processing and its potential applications in supporting plant growth. Four different carbon and nitrogen sources, pH, inoculum concentration and temperature were optimized within Taguchi method. Results Optimization of bioprocess within Taguchi method and experimental analysis revealed that the optimal conditions for biosurfactant production were brewer’s spent grain (5% w/v), ammonium nitrate (1% w/v), pH of 6, 5% of inoculum, and temperature at 30 °C, leading to 6.8 g/L of biosurfactant. Based on gas chromatography–mass spectrometry and Fourier transform infrared spectroscopy analysis produced biosurfactant was determined as glycolipid. Obtained biosurfactant has shown high and long term thermostability, surface tension of 47.7 mN/m, oil displacement of 8 cm and the emulsion index of 69.11%. The examined glycolipid, used in a concentration of 0.2% significantly enhanced growth of Phaseolus vulgaris L. (bean), Raphanus L. (radish), Beta vulgaris L. (beetroot). Conclusions The endophytic Bacillus pumilus 2A produce glycolipid biosurfactant with high and long tem thermostability, what makes it useful for many purposes including food processing. The use of brewer’s spent grain as the sole carbon source makes the production of biosurfactants profitable, and from an environmental point of view, it is an environmentally friendly way to remove food processing by products. Glycolipid produced by endophytic Bacillus pumilus 2A significantly improve growth of Phaseolus vulgaris L. (bean), Raphanus L. (radish), Beta vulgaris L. (beetroot). Obtained results provide new insight to the possible use of glycolipids as plant growth promoting agents.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 319
Author(s):  
Marius Cătălin Barbu ◽  
Zeno Montecuccoli ◽  
Jakob Förg ◽  
Ulrike Barbeck ◽  
Petr Klímek ◽  
...  

Brewer’s spent grain (BSG) is the richest by-product (85%) of the beer-brewing industry, that can be upcycled in a plentiful of applications, from animal feed, bioethanol production or for removal of heavy metals from wastewater. The aim of this research is to investigate the mechanical, physical and structural properties of particleboard manufactured with a mixture of wood particles and BSG gradually added/replacement in 10%, 30% and 50%, glued with polymeric diisocyanate (pMDI), urea-formaldehyde (UF) and melamine urea-formaldehyde (MUF) adhesives. The density, internal bond, modulus of rupture, modulus of elasticity, screw withdrawal resistance, thickness swelling and water absorption were tested. Furthermore, scanning electron microscopy anaylsis was carried out to analyze the structure of the panels after the internal bond test. Overall, it was shown that the adding of BSG decreases the mechanical performance of particleboard, due to reduction of the bonding between wood and BSG particles. This decrease has been associated with the structural differences proven by SEM inspection. Interaction of particles with the adhesive is different for boards containing BSG compared to those made from wood. Nevertheless, decrease in the mechanical properties was not critical for particleboards produced with 10% BSG which could be potentially classified as a P2 type, this means application in non-load-bearing panel for interior use in dry conditions, with high dimensional stability and stiffness.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yi Su ◽  
Marco Wenzel ◽  
Silvia Paasch ◽  
Markus Seifert ◽  
Wendelin Böhm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document