2.3.1 Risk Management on the Advanced Tomahawk Weapon Control System: A Practical Application of Risk Management in Today's Defense Environment

1995 ◽  
Vol 5 (1) ◽  
pp. 354-362
Author(s):  
William C. Ford
2018 ◽  
Author(s):  
Sizwe Makhunga ◽  
Tivani P. Mashamba-Thompson ◽  
Mbuzeleni Hlongwa ◽  
Khumbulani W. Hlongwana

Author(s):  
Neng Wan ◽  
Guangping Zeng ◽  
Chunguang Zhang ◽  
Dingqi Pan ◽  
Songtao Cai

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Shiqiang Wang ◽  
Jianchun Xing ◽  
Ziyan Jiang ◽  
Juelong Li

A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC) system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.


2015 ◽  
Vol 738-739 ◽  
pp. 935-940 ◽  
Author(s):  
Zhen Li ◽  
Pei Xu ◽  
Yu Ping Ouyang ◽  
Shi Lei Lv ◽  
Qiu Fang Dai

In order to reduce operation risk and working intensity in mountainous orchard transportation and to realize optimized control for the mountainous orchard electric-drive monorail transportation system, a mountainous orchard electric-drive monorail transporter control system was designed and developed in this study. The system mainly consists of modules as: manual and remote control, positioning, obstacle avoidance, speed measurement, motor control, electric-magnetic break, and the position limit. The driving speed, current consumption, break control, and battery pack running ability experiments were conducted to test the control system. Results indicated that, the transporter’s driving speed is 0.60~0.58 m/s when it is running on the ground with the load weight from 0 to 100kg. This speed is little affected by the load weight. The transporter’s driving speed is 0.45~0.28 m/s when it is climbing a steep hill with an angle of 39°. That speed is critically affected by the load weight. In further improvements, a shift mechanism will be introduced so that adjustable gear ratio could be achieved thus solve the current overload problem in a full load situation.


Aviation ◽  
2012 ◽  
Vol 16 (4) ◽  
pp. 130-135
Author(s):  
Vaidotas Kondroška ◽  
Jonas Stankūnas

This work reviews the innovative and progressive methods of determination and analysis of safety objectives using Vilnius A-SMGCS example. The aim of the analysis is to determine how failures in this system could affect flight safety in Vilnius aerodrome. Identified safety objectives will limit the frequency of occurrence of hazards enough for the associated risk to be acceptable, and will ensure that appropriate mitigation means are reflected subsequently as Safety Requirements for the system. Analysis reflects aspects of A-SMGCS Safety objectives, which should be taken into consideration. Santrauka Darbe apžvelgiami progresyvūs saugos tikslų analizės metodai pagal Vilniaus aerodromo automatizuotos antžeminio eismo stebėjimo ir kontrolės sistemos veiklos pavyzdį. Analizuojama, kaip šios sistemos sutrikimai gali paveikti skrydžių saugą Vilniaus aerodrome. Remiantis galimų pavojų skrydžių saugai analize, tyrime nustatyti saugos tikslai, pagal kuriuos vėliau bus numatomos riziką mažinančios priemonės (galimų pavojų neutralizavimui ar kylančios rizikos sumažinimui iki priimtino lygio). Straipsnyje pateikiami veiksniai, kuriuos reikėtų įvertinti nustatant aerodromo automatizuotos antžeminio eismo stebėjimo ir kontrolės sistemos saugos tikslus.


Author(s):  
Claudia ARAUJO MACEDO ◽  
Jos MENTING

Cybersecurity in industrial control system environments has become a significant concern and is even more relevant in the context of critical infrastructures where control system disruption could have a profound impact on health, safety and the environment. This makes this type of system a major target for malicious activities. Notwithstanding an organization’s interest in protecting its industrial control systems against cyber-attacks, the implementation of security measures, whether technical, organizational or human, still faces resistance and is often seen as a constraint. Using the best technology to protect industrial control systems makes no sense if persons with access do not act attentively and protectively. Technical and human cybersecurity measures are intrinsically linked, and it is essential that all persons with access to these systems are fully aware of the inherent cyber risks. Organizations must also act so that staff receive appropriate training on how to keep systems continuously protected against cyber-attack when carrying out their daily tasks. These educational processes can contribute to building an effective cybersecurity culture fully reflective of management and staff attitudes, so that the availability, integrity and confidentiality of information in industrial control systems can be assured.


Author(s):  
Mitsuo Hirata ◽  
Akiyo Murase ◽  
Takenori Atsumi ◽  
Kenzo Nonami

Abstract It has been proposed the design method of the two-degree-of-freedom (TDOF) controller which use the dynamical model of the feedback controller. In this study, we apply this design method to the sampled-data control system. The TDOF controller is obtained so that the output of the TDOF system follows the output of the model transfer function considering the intersample behaviors.


2013 ◽  
Vol 631-632 ◽  
pp. 1106-1110
Author(s):  
Wei Zhao ◽  
Qiang Wang ◽  
Sheng Li Song

In the tyred machinery chassis dynamometer control system, a fuzzy PID controller was used to adjust the exciting current of a DC dynamometer in order to change the resistance load torque, so the requirement of roller load for simulating the run resistance from the road surface was satisfied. A fuzzy PID arithmetic was designed to control the resistance loads, the system performance was improved by simulation. The software of the detection line measure-control system was designed in VB, the technical parameters of the machinery chassis could the automatically detected.


Sign in / Sign up

Export Citation Format

Share Document