The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE‐1 cells: A comparative study

2019 ◽  
Vol 40 (5) ◽  
pp. 643-654 ◽  
Author(s):  
Ozge Kose ◽  
Walid Rachidi ◽  
David Beal ◽  
Pınar Erkekoglu ◽  
Hussein Fayyad‐Kazan ◽  
...  
Author(s):  
Paulina Nguyen-Powanda ◽  
Bernard Robaire

Abstract The efficiency of antioxidant defense system decreases with aging, thus resulting in high levels of reactive oxygen species (ROS) and DNA damage in spermatozoa. This damage can lead to genetic disorders in the offspring. There are limited studies investigating the effects of the total loss of antioxidants, such as superoxide dismutase-1 (SOD1), in male germ cells as they progress through spermatogenesis. In this study, we evaluated the effects of aging and removing SOD1 (in male germ cells of SOD1-null (Sod1−/−) mice) in order to determine the potential mechanism(s) of DNA damage in these cells. Immunohistochemical analysis showed an increase in lipid peroxidation and DNA damage in the germ cells of aged wild-type (WT) and Sod1−/− mice of all age. Immunostaining of OGG1, a marker of base excision repair (BER), increased in aged WT and young Sod1−/− mice. In contrast, immunostaining intensity of LIGIV and RAD51, markers of non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively, decreased in aged and Sod1−/− mice. Gene expression analysis showed similar results with altered mRNA expression of these key DNA repair transcripts in pachytene spermatocytes and round spermatids of aged and Sod1−/− mice. Our study indicates that DNA repair pathway markers of BER, NHEJ, and HR are differentially regulated as a function of aging and oxidative stress in spermatocytes and spermatids, and aging enhances the repair response to increased oxidative DNA damage, whereas impairments in other DNA repair mechanisms may contribute to the increase in DNA damage caused by aging and the loss of SOD1.


2021 ◽  
Author(s):  
DİDEM ORAL ◽  
ÜNZİLE SUR ◽  
gizem özkemahlı ◽  
Anıl Yirüna ◽  
N. DİLARA ZEYBEK ◽  
...  

2008 ◽  
Vol 29 (3) ◽  
pp. 794-807 ◽  
Author(s):  
Lyra M. Griffiths ◽  
Dan Swartzlander ◽  
Kellen L. Meadows ◽  
Keith D. Wilkinson ◽  
Anita H. Corbett ◽  
...  

ABSTRACT DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Emma Bolderson ◽  
Joshua T. Burgess ◽  
Jun Li ◽  
Neha S. Gandhi ◽  
Didier Boucher ◽  
...  

AbstractThe DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor–Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Bo Ye ◽  
Ning Hou ◽  
Lu Xiao ◽  
Haodong Xu ◽  
Faqian Li

Backgrounds: DNA damage occurs in cardiomyocytes during normal cellular metabolism and is significantly increased under cardiac stresses. How cardiomyocytes repair their DNA damage, especially DNA double strand breaks (DSBs), remains undetermined. We assessed DSBs caused by oxidative stress. More importantly, we investigated the spatiotemporal dynamics of DNA repair protein assembly/disassembly in DNA damage sites. Methods: Cultured neonatal rat cardiomyocytes were treated with different doses of hydrogen peroxide (H2O2) for 30 minutes to assess DNA damage response (DDR). To investigate the dynamics of DDR, cells were treated with 200 uM H2O2 and followed up to 72 hours. DSBs were evaluated by counting DNA damage foci after staining with antibody against histone H2AX phosphorylation at serine 139 (g-H2AX). The dynamics and posttranslational modification of DNA repair proteins were determined by Western blotting, immunolabeling, and confocal microscopy. Result: g-H2AX was proportionally increased to H2O2 dosage. Discrete nuclear g-H2AX foci were seen 30 minutes after hydrogen peroxide treatment with 50 uM, but became pannuclear when H2O2 was above 400 uM. At 200 uM of hydrogen peroxide, g-H2AX started to increase at 15 minutes and reached to highest levels at 60 minutes with up to 70 nuclear foci, started to decline at 2 hours, and returned to basal levels at 24 hours. DDR transducer kinase, ataxia telangiectasia mutated (ATM) was activated at 5 minutes with increased phosphorylation at serine 1981 (pATM) which started to decrease at 24 hours, but remained elevated up to 48 hours. Another DDR transducer kinase, ATM and Rad3-related (ATR) showed a biphasic activation at 30 minutes and 8 hours. ATM and ATR colocalized with g-H2AX. DNA damage mediator proteins such as MRN complex and p53BP1 were also recruited to sites of DNA damage at g-H2AX foci. Conclusions: DSBs and their repair have emerged as a new frontier of stress responses. Newly developed methods for studying g-H2AX and DNA repair protein dynamics can be explored to investigate DDR to oxidative stress in cardiomyocytes.


2012 ◽  
Vol 28 (6) ◽  
pp. 421-433 ◽  
Author(s):  
Ki Cheon Kim ◽  
In Kyung Lee ◽  
Kyoung Ah Kang ◽  
Hye Sun Kim ◽  
Sam Sik Kang ◽  
...  

2019 ◽  
Vol 476 (24) ◽  
pp. 3791-3804 ◽  
Author(s):  
Steven Cupello ◽  
Yunfeng Lin ◽  
Shan Yan

Oxidative DNA damage represents one of the most abundant DNA lesions. It remains unclear how DNA repair and DNA damage response (DDR) pathways are co-ordinated and regulated following oxidative stress. While XRCC1 has been implicated in DNA repair, it remains unknown how exactly oxidative DNA damage is repaired and sensed by XRCC1. In this communication, we have demonstrated evidence that XRCC1 is dispensable for ATR-Chk1 DDR pathway following oxidative stress in Xenopus egg extracts. Whereas APE2 is essential for SSB repair, XRCC1 is not required for the repair of defined SSB and gapped plasmids with a 5′-OH or 5′-P terminus, suggesting that XRCC1 and APE2 may contribute to SSB repair via different mechanisms. Neither Polymerase beta nor Polymerase alpha is important for the repair of defined SSB structure. Nonetheless, XRCC1 is important for the repair of DNA damage following oxidative stress. Our observations suggest distinct roles of XRCC1 for genome integrity in oxidative stress in Xenopus egg extracts.


Sign in / Sign up

Export Citation Format

Share Document