scholarly journals Distinct roles of XRCC1 in genome integrity in Xenopus egg extracts

2019 ◽  
Vol 476 (24) ◽  
pp. 3791-3804 ◽  
Author(s):  
Steven Cupello ◽  
Yunfeng Lin ◽  
Shan Yan

Oxidative DNA damage represents one of the most abundant DNA lesions. It remains unclear how DNA repair and DNA damage response (DDR) pathways are co-ordinated and regulated following oxidative stress. While XRCC1 has been implicated in DNA repair, it remains unknown how exactly oxidative DNA damage is repaired and sensed by XRCC1. In this communication, we have demonstrated evidence that XRCC1 is dispensable for ATR-Chk1 DDR pathway following oxidative stress in Xenopus egg extracts. Whereas APE2 is essential for SSB repair, XRCC1 is not required for the repair of defined SSB and gapped plasmids with a 5′-OH or 5′-P terminus, suggesting that XRCC1 and APE2 may contribute to SSB repair via different mechanisms. Neither Polymerase beta nor Polymerase alpha is important for the repair of defined SSB structure. Nonetheless, XRCC1 is important for the repair of DNA damage following oxidative stress. Our observations suggest distinct roles of XRCC1 for genome integrity in oxidative stress in Xenopus egg extracts.

Author(s):  
Md Akram Hossain ◽  
Yunfeng Lin ◽  
Garrett Driscoll ◽  
Jia Li ◽  
Anne McMahon ◽  
...  

The maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in Xenopus laevis egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells. Here, we provide evidence using human pancreatic cancer cells that APE2 is essential for ATR DDR pathway activation in response to different stressful conditions including oxidative stress, DNA replication stress, and DNA double-strand breaks. Fluorescence microscopy analysis shows that APE2-knockdown (KD) leads to enhanced γH2AX foci and increased micronuclei formation. In addition, we identified a small molecule compound Celastrol as an APE2 inhibitor that specifically compromises the binding of APE2 but not RPA to ssDNA and 3′-5′ exonuclease activity of APE2 but not APE1. The impairment of ATR-Chk1 DDR pathway by Celastrol in Xenopus egg extracts and human pancreatic cancer cells highlights the physiological significance of Celastrol in the regulation of APE2 functionalities in genome integrity. Notably, cell viability assays demonstrate that APE2-KD or Celastrol sensitizes pancreatic cancer cells to chemotherapy drugs. Overall, we propose APE2 as a general regulator for the DDR pathway in genome integrity maintenance.


2008 ◽  
Vol 29 (3) ◽  
pp. 794-807 ◽  
Author(s):  
Lyra M. Griffiths ◽  
Dan Swartzlander ◽  
Kellen L. Meadows ◽  
Keith D. Wilkinson ◽  
Anita H. Corbett ◽  
...  

ABSTRACT DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Emma Bolderson ◽  
Joshua T. Burgess ◽  
Jun Li ◽  
Neha S. Gandhi ◽  
Didier Boucher ◽  
...  

AbstractThe DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor–Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Songli Zhu ◽  
Mohammadjavad Paydar ◽  
Feifei Wang ◽  
Yanqiu Li ◽  
Ling Wang ◽  
...  

DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.


2004 ◽  
Vol 16 (9) ◽  
pp. 2
Author(s):  
R. J. Aitken

Defective sperm function is the largest defined cause of human infertility, affecting one in twenty Australian males. Despite its prevalence, we are only just beginning to understand the underlying mechanisms. The past decade has seen two major advances in this field: (1) the discovery that Y chromosome deletions play a key role in the aetiology of non-obstructive azoospermia/oligozoospermia; and (2) recognition that oxidative stress can impact upon the functional competence of human spermatozoa through peroxidative damage to the sperm plasma membrane. Oxidative stress has also been found to disrupt the integrity of DNA in the male germ line and may represent an important mechanism by which environmental impacts on human health are mediated. Thus, paternal exposure to various toxicants (cigarette smoke, organic solvents, heavy metals) has been linked with oxidative DNA damage in spermatozoa and developmental defects, including cancer, in the F1 generation. The male germ line becomes particularly vulnerable to such factors during the post meiotic stages of differentiation. Pre-meiotic germ cells always have the option of undergoing apoptosis if DNA damage is severe. However, post meiotic germ cells have lost both the ability to mount an apoptotic response and the capacity for DNA repair. As a result, germ cells are particularly vulnerable to genotoxic agents during spermiogenesis and epididymal maturation. If the fertilizing capacity of the spermatozoa is retained following toxicant exposure, then DNA damage will be transferred to the zygote and must be repaired subsequently by the oocyte and/or early embryo. Aberrant DNA repair at this stage has the potential to create mutations that will compromise embryonic development and, ultimately, the normality of the offspring. Elucidating the causes of oxidative damage in spermatozoa should help resolve the aetiology of conditions such as male infertility, early pregnancy loss and childhood disease, including cancer.


2012 ◽  
Vol 48 (3) ◽  
pp. 193-202 ◽  
Author(s):  
Stefan Karger ◽  
Kerstin Krause ◽  
Cornelia Engelhardt ◽  
Carl Weidinger ◽  
Oliver Gimm ◽  
...  

Increased oxidative stress has been linked to thyroid carcinogenesis. In this paper, we investigate whether oxidative DNA damage and DNA repair differ in follicular adenoma (FA) and follicular thyroid carcinoma (FTC). 7,8-Dihydro-8-oxoguanine (8-OxoG) formation was analysed by immunohistochemistry in 46 FAs, 52 FTCs and 18 normal thyroid tissues (NTs). mRNA expression of DNA repair genes OGG1, Mut Y homologue (MUTYH) and endonuclease III (NTHL1) was analysed by real-time PCR in 19 FAs, 25 FTCs and 19 NTs. Induction and repair of oxidative DNA damage were studied in rat FRTL-5 cells after u.v. irradiation. Moreover, activation of DNA damage checkpoints (ataxia telangiectasia mutated (ATM) and H2A histone family, member X (H2AFX (H2AFX))) and proliferation index (MIB-1) were quantified in 28 non-oxyphilic and 24 oxyphilic FTCs. Increased nuclear and cytosolic 8-OxoG formation was detected in FTC compared with follicular adenoma, whereby cytosolic 8-OxoG formation was found to reflect RNA oxidation. Significant downregulation of DNA repair enzymes was detected in FTC compared with FA. In vitro experiments mirrored the findings in FTC with oxidative stress-induced DNA checkpoint activation and downregulation of OGG1, MUTYH and NTHL1 in FRTL-5 cells, an effect that, however, was reversible after 24 h. Further analysis of FTC variants showed decreased oxidative DNA damage, sustained checkpoint activation and decreased proliferation in oxyphilic vs non-oxyphilic FTC. Our data suggest a pathophysiological scenario of accumulating unrepaired DNA/RNA damage in FTC vs counterbalanced DNA/RNA damage and repair in FA. Furthermore, this study provides the first evidence for differences in oxidative stress defence in FTC variants with possible implications for therapeutic response and prognostic outcome.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 34-34
Author(s):  
Margaret Nieborowska-Skorska ◽  
Artur Slupianek ◽  
Tomasz Stoklosa ◽  
Tomasz Poplawski ◽  
Kimberly Cramer ◽  
...  

Abstract BCR/ABL kinase transforms hematopoietic stem cells (HSCs) to induce chronic myelogenous leukemia in chronic phase (CML-CP), which eventually evolves into fatal blast crisis (CML-BC). CML is a stem cell-derived but a progenitor-driven disease. In CML-CP leukemia stem (LSCs) and progenitor (LPCs) cells reside in CD34+CD38− and CD34+CD38+ populations, respectively, whereas in CML-BC LSCs are found also in CD34+CD38+ population. BCR/ABL kinase stimulates genomic instability causing imatinib-resistant point mutations and chromosomal aberrations associated with progression to CML-BC. Genomic instability may result from enhanced DNA damage and/or aberrant DNA repair mechanisms. We showed that CD34+ stem/progenitor CML cells contain higher levels of reactive oxygen species (ROS) than these from healthy donors (CML-BC>CML-CP>Normal). In addition, ROS were elevated in CD34+CD38− and CD34+CD38+ sub-populations isolated from CML-BC and CML-CP patients in comparison to cells from healthy donor. Higher ROS levels induced more oxidative DNA lesions such as oxidized bases (e.g., 8-oxoG) and DNA double-strand breaks (DSBs). ROS and oxidative DNA damage in CML stem/progenitor cells could be diminished by an antioxidant N-acetyl-cysteine. Moreover, inhibition of ROS by vitamin E reduced the frequency of imatinib-resistant BCR/ABL point mutants and chromosomal aberrations in leukemia cells in SCID mice. Cellular DNA repair systems act to remove DNA damage and ultimately preserve the informational integrity of the genome. Base excision repair (BER) and mismatch repair (MMR) are responsible for removal of oxidized bases. BER was assessed using single- and double-stranded DNA substrates containing 5-OH-U (a derivative of ROS-damaged hydroxy-deoxycytidine). MMR activity was measured by restoration of the expression of GFP from the construct containing T-G mismatch in the start codon. BCR/ABL kinase severely inhibited BER and MMR in cell lines and CD34+ CML cells, and promoted accumulation of point mutations in genes encoding BCR/ABL kinase and Na+/K+ ATPase. Inhibition of BCR/ABL kinase by imatinib restored BER and MMR activities. Oxidized bases, if not repaired, may lead to accumulation of DSBs observed in LSCs and LPCs. DSBs may be processed by homologous recombination (HR), non-homologous and-joininig (NHEJ), and single-strand annealing (SSA). HR represents faithful repair, NHEJ usually produces small deletions, and SSA causes very large deletions. Genome-integrated repair-specific reporter cassettes containing two disrupted fragments of the gene encoding GFP were used where a single DSB induced by I-SceI endonuclease in one of the fragments stimulated HR, NHEJ, or SSA. In general, BCR/ABL kinase enhanced DSBs repair activities, however at the expense of their fidelity. Numerous point mutations were introduced in HR repair products. NHEJ generated larger than usual deletions. SSA, rather rare but very unfaithful, was also induced in BCR/ABL-positive leukemia cells. In summary, BCR/ABL kinase enhanced ROS-mediated oxidative DNA damage in LSCs and LPCs. In addition, BCR/ABL inhibited BER and MMR of usually non-lethal oxidized DNA lesions leading to accumulation of point mutations. Moreover, BCR/ABL kinase stimulated HR, NHEJ and SSA of lethal DSBs, but compromised the fidelity of repair.


Blood ◽  
2012 ◽  
Vol 119 (18) ◽  
pp. 4162-4173 ◽  
Author(s):  
Xue Li ◽  
Jared Sipple ◽  
Qishen Pang ◽  
Wei Du

Abstract Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide–induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress–induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Douglas F. Dluzen ◽  
Yoonseo Kim ◽  
Paul Bastian ◽  
Yongqing Zhang ◽  
Elin Lehrmann ◽  
...  

Oxidative stress is thought to contribute to aging and age-related diseases, such as cardiovascular and neurodegenerative diseases, and is a risk factor for systemic arterial hypertension. Previously, we reported differential mRNA and microRNA (miRNA) expression between African American (AA) and white women with hypertension. Here, we found that the poly-(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein involved in DNA repair and other cellular processes, is upregulated in AA women with hypertension. To explore this mechanism, we identified two miRNAs, miR-103a-2-5p and miR-585-5p, that are differentially expressed with hypertension and were predicted to target PARP1. Through overexpression of each miRNA-downregulated PARP-1 mRNA and protein levels and using heterologous luciferase reporter assays, we demonstrate that miR-103a-2-5p and miR-585-5p regulate PARP1 through binding within the coding region. Given the important role of PARP-1 in DNA repair, we assessed whether overexpression of miR-103a-2-5p or miR-585-5p affected DNA damage and cell survival. Overexpression of these miRNAs enhanced DNA damage and decreased both cell survival and colony formation. These findings highlight the role for PARP-1 in regulating oxidative DNA damage in hypertension and identify important new miRNA regulators of PARP-1 expression. These insights may provide additional avenues to understand hypertension health disparities.


Sign in / Sign up

Export Citation Format

Share Document