Porous PEOT/PBT scaffolds for bone tissue engineering: Preparation, characterization, andin vitro bone marrow cell culturing

2003 ◽  
Vol 64A (2) ◽  
pp. 291-300 ◽  
Author(s):  
Menno B. Claase ◽  
Dirk W. Grijpma ◽  
Sandra C. Mendes ◽  
Joost D. de Bruijn ◽  
Jan Feijen
2011 ◽  
Vol 26 (8) ◽  
pp. 1035-1049 ◽  
Author(s):  
Federico Foschi ◽  
Enrico Conserva ◽  
Paolo Pera ◽  
Barbara Canciani ◽  
Ranieri Cancedda ◽  
...  

2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1880 ◽  
Author(s):  
Ulrike Rottensteiner-Brandl ◽  
Rainer Detsch ◽  
Bapi Sarker ◽  
Lara Lingens ◽  
Katrin Köhn ◽  
...  

Alginate dialdehyde (ADA), gelatin, and nano-scaled bioactive glass (nBG) particles are being currently investigated for their potential use as three-dimensional scaffolding materials for bone tissue engineering. ADA and gelatin provide a three-dimensional scaffold with properties supporting cell adhesion and proliferation. Combined with nanocristalline BG, this composition closely mimics the mineral phase of bone. In the present study, rat bone marrow derived mesenchymal stem cells (MSCs), commonly used as an osteogenic cell source, were evaluated after encapsulation into ADA-gelatin hydrogel with and without nBG. High cell survival was found in vitro for up to 28 days with or without addition of nBG assessed by calcein staining, proving the cell-friendly encapsulation process. After subcutaneous implantation into rats, survival was assessed by DAPI/TUNEL fluorescence staining. Hematoxylin-eosin staining and immunohistochemical staining for the macrophage marker ED1 (CD68) and the endothelial cell marker lectin were used to evaluate immune reaction and vascularization. After in vivo implantation, high cell survival was found after 1 week, with a notable decrease after 4 weeks. Immune reaction was very mild, proving the biocompatibility of the material. Angiogenesis in implanted constructs was significantly improved by cell encapsulation, compared to cell-free beads, as the implanted MSCs were able to attract endothelial cells. Constructs with nBG showed higher numbers of vital MSCs and lectin positive endothelial cells, thus showing a higher degree of angiogenesis, although this difference was not significant. These results support the use of ADA/gelatin/nBG as a scaffold and of MSCs as a source of osteogenic cells for bone tissue engineering. Future studies should however improve long term cell survival and focus on differentiation potential of encapsulated cells in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2008 ◽  
Vol 368-372 ◽  
pp. 1235-1237 ◽  
Author(s):  
Lei Liu ◽  
Run Liang Chen ◽  
Yun Feng Lin ◽  
Wei Dong Tian ◽  
Sheng Wei Li

Hydroxyapatite-tricalcium phosphate (HA-TCP) is a new kind of material which shows good biocompatibility, biological degradability, and porosity. This study aimed to determine the effectiveness of HA-TCP as a bone tissue engineering scaffold. In this study, critical size cranial defects were reconstructed with compounds of autogenous bone marrow stromal cells (BMSCs) and HA-TCP. The resulting grafts were examined by X-ray, histological examination, semi-quantitative analysis of osteogenesis, immunochemical examination (collagen type I and III), scanning electron microscopy and transmission electron microscopy. The results showed that HA-TCP is a good bone tissue engineering scaffold and BMSCs/HA-TCP is a promising technique for reconstruction of bone defects.


Sign in / Sign up

Export Citation Format

Share Document