Combined application of femtosecond laser and air‐abrasion protocols to monolithic zirconia at different sintering stages: Effects on surface roughness and resin bond strength

Author(s):  
Yener Okutan ◽  
Banucicek Kandemir ◽  
Yasemin Gundogdu ◽  
Hamdi Sukur Kilic ◽  
Munir Tolga Yucel
2016 ◽  
Vol 29 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Li Zhou ◽  
Yuetong Qian ◽  
Kang Gan ◽  
Hong Liu ◽  
Xiuju Liu ◽  
...  

This study was designed to evaluate the shear bond strength of an adhesive/composite system subjected to different pretreated polyetheretherketone (PEEK) surfaces using different thermocycling conditioning methods. A total of 128 specimens were equally divided into four main groups ( n = 32/group): control (no pretreatment), air abrasion, argon plasma pretreatment, and femtosecond laser groups. The surface topographies and surface roughness were observed by atomic force microscopy after different pretreatments. The specimens were bonded with SE Bond/Clearfil AP-X™. All bonded specimens were stored in distilled water at 37°C for 24 h. Afterward, each group was divided into three subgroups ( n = 8/group) as follows: (a) stored in water for 56 h (37°C); (b) thermal aging for 5000 cycles (5°C/55°C); and (c) thermal aging for 10,000 cycles (5°C/55°C). The shear bond strengths were measured. Air abrasion, argon plasma pretreatment, and femtosecond laser significantly strengthened the bond of SE Bond/Clearfil AP-X™ to PEEK composite compared with that without additional pretreatment. In the same surface pretreatment, the shear bond strengths of specimens conditioned using water storage were higher than that using thermocycles (TCs). Additionally, the specimens with 5000 TC showed significantly higher shear bond strength than that with 10000 TC.


2018 ◽  
Vol 19 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Hasan Skienhe ◽  
Roland Habchi

ABSTRACT Aim The aim of this study was to evaluate the effect of different surface treatments on roughness, grain size, and phase transformation of presintered zirconia. Materials and methods Surface treatments included airborne particle abrasion (APA) before and after sintering with different particles shape, size, and pressure (50 μm Al2O3, 50 μm glass beads, and ceramic powder). Thirty-five square-shaped presintered yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic slabs (Zenostar ZR bridge, Wieland) were prepared (4 mm height × 10 mm width × 10 mm length) and polished with silicon carbide grit papers #800, 1000, 1200, 1500, and 2000 to ensure identical initial roughness. Specimens were divided into five groups according to surface treatment: group I (control): no surface treatment; group II: APA 50 μm Al2O3 after sintering; group III: APA 50 μm Al2O3 particles before sintering; group IV: APA 50 μm glass bead particles before sintering; and group V: APA ceramic powder before sintering. Specimens were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) analyses, and tested for shear bond strength (SBS). Data were statistically analyzed using one-way analysis of variance (ANOVA) followed by post hoc tests for multiple comparisons Tukey's test (α ≥ 0.05). Results Air abrasion before sintering significantly increased the surface roughness when compared with groups I and III. The highest tetragonal to monoclinic (t-m) phase transformation (0.07%) was observed in group III, and a reverse transformation was observed in presintered groups (0.01%). Regarding bond strength, there was a significant difference between APA procedures pre- and postsintering. Conclusion Air abrasion before sintering is a valuable method for increasing surface roughness and SBS. The abrasive particles’ size and type used before sintering had a little effect on phase transformation. Clinical significance Air abrasion before sintering could be supposed to be an alternative surface treatment method to air abrasion after sintering. How to cite this article Skienhe H, Habchi R, Ounsi HF, Ferrari M, Salameh Z. Structural and Morphological Evaluation of Presintered Zirconia following Different Surface Treatments. J Contemp Dent Pract 2018;19(2):156-165.


2021 ◽  
Vol 11 (15) ◽  
pp. 6925
Author(s):  
Shanshan Liang ◽  
Hongqiang Ye ◽  
Fusong Yuan

Conventional bonding technology suitable for silica-based ceramics is not applicable to zirconia, due to its polycrystalline phase composition, chemical stability, and acid corrosion resistance. The development of an effective treatment to improve its surface roughness and mechanical properties remains an unresolved problem. Therefore, to solve this problem, this in vitro study evaluated the changes in surface morphology and flexural strength of translucent monolithic zirconia surfaces treated with femtosecond laser technology. As-sintered translucent zirconia specimens were subjected to airborne particle abrasion and femtosecond laser treatments, while control group specimens received no treatment. After treatment, the roughness and morphology of the treated zirconia surfaces were examined. The flexural strength and X-ray diffraction of the treated specimens were measured and analyzed. Statistical inferential analysis included one-way analysis of variance at a set significance level of 5%. The surface roughness after femtosecond laser treatment was significantly improved when compared with the control group and the group that received the airborne particle abrasion treatment (p < 0.05). In comparison with the airborne particle abrasion group, the flexural strength of the group that received the femtosecond laser treatment was significantly improved (p < 0.05). The femtosecond laser approach using appropriate parameters enhanced the roughness of the zirconia without reducing its flexural strength; therefore, this approach offers potential for the treatment of zirconia surfaces.


2019 ◽  
Vol 44 (2) ◽  
pp. 156-167 ◽  
Author(s):  
Z Demirtag ◽  
AK Culhaoglu

SUMMARY Objectives: The aim of this study was to investigate the effects of femtosecond laser irradiation, sandblasting, or acid etching treatments on the surface roughness of ceramic-resin composites and also shear bond strength (SBS) with and without silanization to a resin cement. Methods: Samples of Vita Enamic (VE; Vita Zahnfabrik, Bad Säckingen, Germany) and Lava Ultimate (LU; 3M ESPE, Seefeld, Germany) were classified into control (no treatment), sandblasting, hydrofluoric acid, and femtosecond laser groups (n=30). Surface roughness was determined using two-dimensional contact profilometry. Surface topography was evaluated using a three-dimensional contact profilometer and a scanning electron microscope. Then groups were divided into two subgroups with similar surface roughness values, including control (C), control + silane (C-S), sandblasting (SB), sandblasting + silane (SB-S), hydrofluoric acid (HF), hydrofluoric acid + silane (HF-S), femtosecond laser (FS), and femtosecond laser + silane (FS-S) groups (n=15). Panavia F 2.0 resin cement was applied to the sample surfaces using an SDI SBS rig (SDI Limited, Bayswater, Australia). The SBS test was performed after water storage (24 h, 37°C) and thermocycles (2000 cycles, 5°C to 55°C), and failure modes were evaluated. Results: The highest surface roughness was observed in the FS group, and the highest SBS was observed in the FS-S group for both VE and LU (p&lt;0.001). Silanization improved the SBS of VE significantly (p&lt;0.001) in all surface treatments but did not improve that of LU except in the FS group (p=0.004). There was a significantly moderate negative correlation in the VE/SB group (p=0.012) and a moderate positive correlation in the VE/HF group (p=0.049). Conclusions: Femtosecond laser irradiation was found to be more effective than sandblasting or acid etching in increasing the surface roughness, and it was also the most effective surface treatment with silanization on the SBS of a resin cement to the ceramic-resin composites.


2021 ◽  
Vol 138 ◽  
pp. 106899
Author(s):  
Zhaoqing Li ◽  
Olivier Allegre ◽  
Qianliang Li ◽  
Wei Guo ◽  
Lin Li

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


2008 ◽  
Vol 02 (03) ◽  
pp. 167-175 ◽  
Author(s):  
Abdulkadir Sengun ◽  
Hasan Orucoglu ◽  
Ilknur Ipekdal ◽  
Fusun Ozer

ABSTRACTObjectives: The purpose of this in vitro study was to evaluate whether mechanical alteration of the enamel surfaces with air abrasion and bur abrasion techniques could enhance the bonding performance of a three step and a self etching adhesive resin systems to enamel.Methods: 126 extracted lower human incisor teeth were used. The teeth were divided into three groups including 40 teeth each. First group; teeth were used as control and no preparation was made on enamel surfaces, 2nd group; outer enamel surfaces were air abraded, 3rd group; outer enamel surfaces were abraded mechanically with a diamond fissure bur. Cylinder composite resin blocks were bonded to the buccal enamel surfaces with two bonding systems (20 specimens in each group). Bond strengths to enamel surfaces were measured at a cross-head speed of 1 mm/min. The data were analyzed by ANOVA and Duncan Tests. To examine interface composite resin/enamel surfaces at scanning electron microscopy, remaining 6 teeth were used. Fracture analysis was performed using an optical stereomicroscope.Results: Bond strengths values of Solid Bond were significantly higher than bond strengths of Clearfil SE Bond for all types of enamel (P<.05). Shear bond strength values obtained with Solid Bond (three step system) to three types of enamel surfaces [air-abraded (30.25±7.00 MPa), bur-abraded (29.07±3.53 MPa), control (31.74±7.35 MPa)] were close to each other (P>.05). The macroscopic mode of failures for bonding systems, SB and SE Bond appeared to be adhesive and cohesive in nature.Conclusions: In order to get better bond strength values with self etching systems, it is advisable to prepare enamel surfaces with bur or air abrasion, but it enamel preparation is not necessary for three step systems. (Eur J Dent 2008;2:167-175)


Sign in / Sign up

Export Citation Format

Share Document