scholarly journals Compromised Exercise Capacity and Mitochondrial Dysfunction in the Osteogenesis Imperfecta Murine ( oim ) Mouse Model

2019 ◽  
Vol 34 (9) ◽  
pp. 1646-1659 ◽  
Author(s):  
Victoria L Gremminger ◽  
Youngjae Jeong ◽  
Rory P Cunningham ◽  
Grace M Meers ◽  
R Scott Rector ◽  
...  
2013 ◽  
Author(s):  
Wayne Cabral ◽  
Irina Perdivara ◽  
MaryAnn Weis ◽  
Masahiko Terajima ◽  
Angela Blissett ◽  
...  

2015 ◽  
Author(s):  
Craig Munns ◽  
Lauren Peacock ◽  
Kathy Mikulec ◽  
Michaela Kneissel ◽  
Ina Kramer ◽  
...  

2019 ◽  
Vol 116 (10) ◽  
pp. 1700-1709 ◽  
Author(s):  
Mario Boehm ◽  
Xuefei Tian ◽  
Yuqiang Mao ◽  
Kenzo Ichimura ◽  
Melanie J Dufva ◽  
...  

Abstract Aims The temporal sequence of events underlying functional right ventricular (RV) recovery after improvement of pulmonary hypertension-associated pressure overload is unknown. We sought to establish a novel mouse model of gradual RV recovery from pressure overload and use it to delineate RV reverse-remodelling events. Methods and results Surgical pulmonary artery banding (PAB) around a 26-G needle induced RV dysfunction with increased RV pressures, reduced exercise capacity and caused liver congestion, hypertrophic, fibrotic, and vascular myocardial remodelling within 5 weeks of chronic RV pressure overload in mice. Gradual reduction of the afterload burden through PA band absorption (de-PAB)—after RV dysfunction and structural remodelling were established—initiated recovery of RV function (cardiac output and exercise capacity) along with rapid normalization in RV hypertrophy (RV/left ventricular + S and cardiomyocyte area) and RV pressures (right ventricular systolic pressure). RV fibrotic (collagen, elastic fibres, and vimentin+ fibroblasts) and vascular (capillary density) remodelling were equally reversible; however, reversal occurred at a later timepoint after de-PAB, when RV function was already completely restored. Microarray gene expression (ClariomS, Thermo Fisher Scientific, Waltham, MA, USA) along with gene ontology analyses in RV tissues revealed growth factors, immune modulators, and apoptosis mediators as major cellular components underlying functional RV recovery. Conclusion We established a novel gradual de-PAB mouse model and used it to demonstrate that established pulmonary hypertension-associated RV dysfunction is fully reversible. Mechanistically, we link functional RV improvement to hypertrophic normalization that precedes fibrotic and vascular reverse-remodelling events.


2015 ◽  
Vol 136 (3) ◽  
pp. 497-502 ◽  
Author(s):  
Annica Rönnbäck ◽  
Pavel. F. Pavlov ◽  
Mansorah Mansory ◽  
Prisca Gonze ◽  
Nicolas Marlière ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Mei Methawasin ◽  
Kirk R Hutchinson ◽  
John E Smith ◽  
Henk L Granzier

Titin, a myofilament that acts as a molecular spring in the sarcomere, is considered the main contributor to passive stiffness of cardiomyocytes and is responsible for cardiac diastolic function. Increased titin stiffness is related to diastolic dysfunction and HFpEF (Heart Failure with preserved Ejection Fraction). Alteration in size of titin’s spring region leads to changes in cardiomyocyte and left ventricular (LV) chamber stiffness. We tested the effect of alteration in titin’s size in two genetically engineered mouse models. We investigated the effect of shortening titin’s spring region in a mouse model in which I-band/A-band region of titin’s spring has been deleted (TtnΔIAjxn ), in comparison to the effect of lengthening titin’s spring region in a mouse model deficient in titin splicing factor (Rbm20ΔRRM). Integrative approaches were used from single cardiomyocyte mechanics to pressure-volume analysis and exercise study. Study of skinned LV cardiomyocytes revealed that cellular passive stiffness was inversely related to the size of titin. Cellular passive stiffness was increased in TtnΔIAjxn homozygous (-/-) (~ 110 % higher than wildtype (WT)) and was reduced in a graded manner in Rbm20ΔRRM heterozygous (+/-) and -/- cardiomyocytes (~61% and ~87% less than WT). This effect was carried through at the LV chamber level which could be demonstrated in pressure volume (PV) analysis as an increased end-diastolic pressure-volume relationship (EDPVR) in TtnΔIAjxn -/- (~110% higher than WT’s hearts) and reduced EDPVR in Rbm20ΔRRM +/- and -/- (~57% and ~48% less than WT’s hearts). Free-wheel running studies revealed a running deficiency in TtnΔIAjxn -/- mice but an increase in exercise capacity in Rbm20ΔRRM +/– mice. Conclusions: Functional studies from the cellular to in-vivo LV chamber levels showed that mice with shortening of titin’s spring region had increased LV stiffness, diastolic dysfunction and reduced exercise capacity, while mice with lengthening titin’s spring region had compliant LV and increased exercise capacity. Thus, our work supports titin’s important roles in LV diastolic function and suggests that modification of the size of titin’s spring region could be a potential therapeutic strategy for HFpEF.


2018 ◽  
Vol 104 (4) ◽  
pp. 426-436 ◽  
Author(s):  
Lucinda R. Lee ◽  
Lauren Peacock ◽  
Samantha L. Ginn ◽  
Laurence C. Cantrill ◽  
Tegan L. Cheng ◽  
...  

2019 ◽  
Vol 509 (1) ◽  
pp. 235-240 ◽  
Author(s):  
Amanda L. Scheiber ◽  
Adam J. Guess ◽  
Takashi Kaito ◽  
Joshua M. Abzug ◽  
Motomi Enomoto-Iwamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document